Determine as raízes das funções:
a) Y= 20x^2 -x-1
b) f(x) = x^2 +x +5
c) Y= X^2 - 2x + 1
d) f(x)= -x^2 = -x^2 - 6x -5
e) Y= -x^2 + 9
f) Y= -X^2 + 4x
É urgente please respondam
Respostas
respondido por:
0
Oi!
Para determinar as raízes da função do 2º grau, como é o caso, pode-se resolver pela fórmula Bhaskara:
Δ=b²- 4ac
A) Y=20x²-x-1
Δ= (-1)²-4.20.(-1)
Δ=1+80
Δ=81
X=-b+-√Δ/2a
X=-(-1)+-√81/2.20
X=1+-9/40
X'=1-9/40= -0,2
X"=1+8/40= 0,225
B)
F(x)= X²+X+5
Δ=1²-4.1.5
Δ=1-20
Δ=-19 (Δ<0 ⇒Não tem raízes reais)
C)
Y=X²-2X+1
Δ=(-2)²-4.1.1
Δ=4-4
Δ=0
X= -(-2)+-√0/2.1
X=2+-0/2
X'=X"=2/2 =1
D)
F(X)=-X²= - X²-6X-5
-X²+X²+6X+5=0
0X²+6X+5=0
(uma das exigências para ser uma equação ou função do 2ºgrau é que a≠0, ou seja, esta equação é impossível)
E)
Y= -X²+9
-X²=-9 (multiplica por -1, a fim de tirar o sinal negativo da variável "x")
X²=9
X=√9
X=3 ⇒ X'=3 e X"=-3
F)
Y= -X²+4X
-X²+4X=0
Δ=4²-4.(-1).0
Δ=16-0
Δ=16
X=-4+-√16/2.(-1)
X=-4+-4/-2
X'=-4+4/-2 = 0/-2 = 0
X"=-4-4/-2 = -8/-2 = 4
Espero ter ajudado.
Para determinar as raízes da função do 2º grau, como é o caso, pode-se resolver pela fórmula Bhaskara:
Δ=b²- 4ac
A) Y=20x²-x-1
Δ= (-1)²-4.20.(-1)
Δ=1+80
Δ=81
X=-b+-√Δ/2a
X=-(-1)+-√81/2.20
X=1+-9/40
X'=1-9/40= -0,2
X"=1+8/40= 0,225
B)
F(x)= X²+X+5
Δ=1²-4.1.5
Δ=1-20
Δ=-19 (Δ<0 ⇒Não tem raízes reais)
C)
Y=X²-2X+1
Δ=(-2)²-4.1.1
Δ=4-4
Δ=0
X= -(-2)+-√0/2.1
X=2+-0/2
X'=X"=2/2 =1
D)
F(X)=-X²= - X²-6X-5
-X²+X²+6X+5=0
0X²+6X+5=0
(uma das exigências para ser uma equação ou função do 2ºgrau é que a≠0, ou seja, esta equação é impossível)
E)
Y= -X²+9
-X²=-9 (multiplica por -1, a fim de tirar o sinal negativo da variável "x")
X²=9
X=√9
X=3 ⇒ X'=3 e X"=-3
F)
Y= -X²+4X
-X²+4X=0
Δ=4²-4.(-1).0
Δ=16-0
Δ=16
X=-4+-√16/2.(-1)
X=-4+-4/-2
X'=-4+4/-2 = 0/-2 = 0
X"=-4-4/-2 = -8/-2 = 4
Espero ter ajudado.
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás