A diferença entre a maior e a menor raiz real da equação (2x –+ 1) ∙ (2x –– 1) = 4x –é igual a:
Respostas
Explicação passo-a-passo:
2x−
2
+1)∗(2x−
2
−1)=4x−
8
4x
2
−2x
2
−2x−2x
2
+(
2
)
2
+
2
+2x−
2
−1=4x−
8
4x
2
−2x
2
−̸2x−2x
2
+2+̸
̸2
+̸2x−̸
̸2
−1=4x−
8
4x
2
−2x
2
−2x
2
+2−1=4x−
8
4x
2
−4x
2
+1=4x−
8
\begin{lgathered}4x^2 - 4x \sqrt{2} + 1 -4x + 2\sqrt{2} \\ \\ \\ 4x^2 - x (4 + 4 \sqrt{2}) +1 + 2 \sqrt{2} \\ \\ \\\end{lgathered}
4x
2
−4x
2
+1−4x+2
2
4x
2
−x(4+4
2
)+1+2
2
=====
Calculando as raízes igualamos os termos à zero
\begin{lgathered}2x - 1 = 0 \\ \\ x' = \dfrac{1}{2} \\ \\ \\ 2x -(1 + 2 \sqrt{2}) \\ \\ 2x = (1 + 2 \sqrt{2}) \\ \\ \\ x'' = \dfrac{(1 + 2 \sqrt{2})}{2}\end{lgathered}
2x−1=0
x
′
=
2
1
2x−(1+2
2
)
2x=(1+2
2
)
x
′′
=
2
(1+2
2
)
X' - X''
\begin{lgathered}\dfrac{1}{2} - \dfrac{(1 + 2 \sqrt{2})}{2} \\ \\ \\ => - \sqrt{2}\end{lgathered}
2
1
−
2
(1+2
2
)
=>−
2
(2x-1)^2 = 4x
4x^2-4x+1=4x
4x^2-4x-4x=-1
4x^2-8x=-1
x^2-2x=-1/4
x^2-2x+1^2=-1/4+1^2
(x-1)^2 = 3/4
x' =
x'' =
x' - x'' =