• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 7 anos atrás

(9z^2-11)^2019x(9z^2-11)^-2018=0 qual valor de z?​

Respostas

respondido por: GeBEfte
0

\left(9z^2-11\right)^{2019}~.~\left(9z^2-11\right)^{-2018}~=~0\\\\\\\left(9z^2-11\right)^{2019\,+\,(-2018)}~=~0\\\\\\\left(9z^2-11\right)^{2019\,-\,2018}~=~0\\\\\\\left(9z^2-11\right)^{1}~=~0\\\\\\9z^2-11~=~0\\\\\\9z^2~=~11\\\\\\z^2~=~\dfrac{11}{9}\\\\\\z~=~\pm\sqrt{\dfrac{11}{9}}\\\\\\\boxed{z~=~\pm\dfrac{\sqrt{11}}{3}}

respondido por: analuor
0

Explicação passo-a-passo:

(9z^{2}  - 11 {)}^{2019}  \times (9z^{2}  - 11 {)}^{ - 2018}  \\ (9z^{2}  - 11 {)}^{2019 - 2018}   \\ (9z^{2}  - 11 {)}^{1}  \\ 9z^{2}  - 11

• Espero ter ajudado.

Perguntas similares