• Matéria: Matemática
  • Autor: solangeDAA2019
  • Perguntado 7 anos atrás

Para construir uma caixa de papelão se utilizou uma chapa de recorte quadrado com 1,20 m de lado, como mostra a figura 1.
Usando os conceitos de otimização, calcule o volume máximo que essa caixa
poderá ter for respeitada a linha de corte.
Assinale a resposta correta e justificando com os cálculos sua resposta:
a) 0,0741 m³
b) 1 m³
c) 0,50 m³
d) 0,05 m³
e) 0,128 m³

Anexos:

Respostas

respondido por: barbaramirelly8
0

Resposta:

Volume máximo = 0,064 m³

mais proximo de 0,07 letra "A"

Explicação passo-a-passo:

Volume máximo = 0,064 m³ mais proximo de 0,07 letra A

1) Sabemos que o lado da figura e equivalente:

Lado = x + x + 1,20 - 2x

Lado = 2x - 2x + 1,20

Lado = 1,20

2) Outro ponto importante e que pela figura podemos ver que que a base da caixa será um quadrado de lados 1-2x (parte azul da figura) e as paredes da caixa terão lados de medida Parede 1 = x e Parede 2 = 1-2x.

3) Por fim sabemos que a caixa apresenta um volume máximo quando todos os lados são iguais, para que isso ocorra:

1,20 - 2x = x

1,20 = x + 2x

3x = 1,20

x = 1,20/3

x = 0,4 metros

4) Assim a caixa tera um volume de:

Volume caixa = 0,4 * 0,4 * 0,4

Volume caixa = 0,064 m³

Perguntas similares