• Matéria: Matemática
  • Autor: brisacristina10
  • Perguntado 7 anos atrás

45. Daniel pretende construir uma embalagem de perfume a partir da rotação de 360°, em torno da hipotenusa de
um triângulo retângulo de catetos iguais a 15 cm e 20 cm. Se 1 mL do perfume que vai ser vendido, nessa
embalagem, custa R$ 0,20, qual o preço da embalagem cheia que Daniel construirá? Despreze o preço da
embalagem e considere π = 3
a) R$ 700,00.
b) R$ 720,00.
c) R$ 1.200,00.
d) R$ 1.800,00.
e) R$ 3.600,00.

Respostas

respondido por: andre19santos
0

O preço da embalagem cheia que Daniel construirá será R$720,00.

A rotação em torno da hipotenusa resulta em uma figura formada por dois cones.

Dessa forma, temos que a hipotenusa será igual a:

a² = 15² + 20²

a² = 625

a = 25 cm

Pelas relações métricas no triângulo retângulo, temos que um dos cones terá altura m e o outro altura n, onde m+n é a hipotenusa, já o raio de ambos será igual a altura relativa a hipotenusa.

c² = m.a

20² = m.25

m = 16 cm

b² = n.a

15² = n.25

n = 9 cm

h² = m.n

h² = 16.9

h = 12 cm

Se os cones tem alturas de 16 cm e 9 cm e raio 12 cm, temos que o volume será:

Vc = π.r².h/3

V = 3.12².16/3 + 3.12².9/3

V = 3600 cm³

Como 1 cm³ = 1 ml, se cada mililitro de perfume custa R$0,20, o preço da embalagem será:

P = 0,2 . 3600

P = R$720,00

Resposta: B

Perguntas similares