Respostas
respondido por:
2
OLÁ KRLINHA,
podemos identificar os termos desta P.A.:
![~~~~~~~~~~~~~~~~~~~~~~~~a_1~~~~~~~~~a_n\\~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~|\\P.A.=(17,18,19,20..........528,529,530,531,532)\\\\
multiplos~de~4~~(razao~4) ~~~~~~~~~~~~~~~~~~~~~~~~a_1~~~~~~~~~a_n\\~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~|\\P.A.=(17,18,19,20..........528,529,530,531,532)\\\\
multiplos~de~4~~(razao~4)](https://tex.z-dn.net/?f=%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7Ea_1%7E%7E%7E%7E%7E%7E%7E%7E%7Ea_n%5C%5C%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7C%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7C%5C%5CP.A.%3D%2817%2C18%2C19%2C20..........528%2C529%2C530%2C531%2C532%29%5C%5C%5C%5C%0Amultiplos%7Ede%7E4%7E%7E%28razao%7E4%29)
Usando a fórmula do termo geral, para achar o número d múltiplos (de termos)..
![a_n=a_1+(n-1)r\\
528=20+(n-1)\cdot4\\
4n-4=528-20\\
4n-4=508\\
4n=508+4\\
4n=512\\\\
n= \dfrac{512}{4}\\\\
\Large\boxed{n=128~multiplos} a_n=a_1+(n-1)r\\
528=20+(n-1)\cdot4\\
4n-4=528-20\\
4n-4=508\\
4n=508+4\\
4n=512\\\\
n= \dfrac{512}{4}\\\\
\Large\boxed{n=128~multiplos}](https://tex.z-dn.net/?f=a_n%3Da_1%2B%28n-1%29r%5C%5C%0A528%3D20%2B%28n-1%29%5Ccdot4%5C%5C%0A4n-4%3D528-20%5C%5C%0A4n-4%3D508%5C%5C%0A4n%3D508%2B4%5C%5C%0A4n%3D512%5C%5C%5C%5C%0An%3D+%5Cdfrac%7B512%7D%7B4%7D%5C%5C%5C%5C%0A%5CLarge%5Cboxed%7Bn%3D128%7Emultiplos%7D)
^^ estude!!!
podemos identificar os termos desta P.A.:
Usando a fórmula do termo geral, para achar o número d múltiplos (de termos)..
^^ estude!!!
korvo:
tendeu ???
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás