As representações gráficas de duas funções do 1° grau, f e g, são dadas a seguir;
B) Qual é o valor de f(2) + g(1)?
C) Determine as coordenadas de P.
D) obtenha a área do triângulo PQR
Respostas
Resposta:
3,6
Explicação passo-a-passo:
Para isso devemos descobrir os coeficientes angulares de cada uma e após isso encontrar o coeficiente linear.
Verde f(x)
Vermelha g(x)
Verde f(x)
m=∆y/∆x
m=1-4/3-1
m=-3/2
Y=ax+b
Substituindo
1=-3/2*3+b
1=-9/2+b
b=2+9/2
b=11/2
Equação da f Verde.
Y=-3/2x+11/2
Vermelha g(x)
m=-1-(-5)/6-4
m=4/2
m=2
Substituindo
-1=2*6+b
b=-12-1
b=-13
Equação vermelha
Y=2x-13
F(2)+g(1)
Y=-3/2*2+11/2
Y=-3+11/2
Y=-6+11/2
Y=5/2
Y=2*1-13
Y=2-13
Y=-11
5/2+(-11)=>5/2-22=>-17/2
C)
-3/2x+11/2=2x-13
-3/2x-2x=-11/2-13
-3/2x-4x=-37/2
-7/2x=-37/2
X=-37/2*-2/7
X=74/14
X=37/7
Y=2x-13
Y=2*37/7-13
Y=74/7-13
Y=-17/7
P(37/7 , -17/7)
D)área de uma triângulo é dada pelo determinante das cordenadas de seus vértices dividido por 2.
Para achar os 2 pontos faltantes basta achar as raízes.
Y=2x-13
0=2x-13
2x=13
X=13/2
(13/2,0)
Y=-3/2x+11/2
-3/2x=-11/2
X=-11/2 ÷ (-3/2)
X=-11/2* -2/3
X=22/6
X=11/3
(11/3 ,0 )
Determinante é 289/42
289/42*1/2
289/84=3,6 é a área deste triângulo