Respostas
respondido por:
2
Regra do quociente:
![\left(\dfrac{f(x)}{g(x)}\right)'=\dfrac{f'(x)g(x)-g'(x)f(x)}{(g(x))^{2}} \left(\dfrac{f(x)}{g(x)}\right)'=\dfrac{f'(x)g(x)-g'(x)f(x)}{(g(x))^{2}}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%5Cright%29%27%3D%5Cdfrac%7Bf%27%28x%29g%28x%29-g%27%28x%29f%28x%29%7D%7B%28g%28x%29%29%5E%7B2%7D%7D)
_________________________________
Pode resolver pela regra do quociente ou simplificando a expressão
Regra do quociente:
![y'=\dfrac{\sqrt{x}\cdot\frac{d}{dx}(x^{2}+4x+3)-(x^{2}+4x+3)\cdot\frac{d}{dx}\sqrt{x}}{(\sqrt{x})^{2}}\\\\\\y'=\dfrac{\sqrt{x}\cdot(2x+4)-(x^{2}+4x+3)\cdot\frac{d}{dx}x^{1/2}}{|x|}\\\\\\y'=\dfrac{\sqrt{x}(2x+4)-(x^{2}+4x+3)\cdot\frac{1}{2}x^{-1/2}}{|x|}\\\\\\y'=\dfrac{\sqrt{x}(2x+4)-\frac{x^{2}+4x+3}{2\sqrt{x}}}{|x|} y'=\dfrac{\sqrt{x}\cdot\frac{d}{dx}(x^{2}+4x+3)-(x^{2}+4x+3)\cdot\frac{d}{dx}\sqrt{x}}{(\sqrt{x})^{2}}\\\\\\y'=\dfrac{\sqrt{x}\cdot(2x+4)-(x^{2}+4x+3)\cdot\frac{d}{dx}x^{1/2}}{|x|}\\\\\\y'=\dfrac{\sqrt{x}(2x+4)-(x^{2}+4x+3)\cdot\frac{1}{2}x^{-1/2}}{|x|}\\\\\\y'=\dfrac{\sqrt{x}(2x+4)-\frac{x^{2}+4x+3}{2\sqrt{x}}}{|x|}](https://tex.z-dn.net/?f=y%27%3D%5Cdfrac%7B%5Csqrt%7Bx%7D%5Ccdot%5Cfrac%7Bd%7D%7Bdx%7D%28x%5E%7B2%7D%2B4x%2B3%29-%28x%5E%7B2%7D%2B4x%2B3%29%5Ccdot%5Cfrac%7Bd%7D%7Bdx%7D%5Csqrt%7Bx%7D%7D%7B%28%5Csqrt%7Bx%7D%29%5E%7B2%7D%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B%5Csqrt%7Bx%7D%5Ccdot%282x%2B4%29-%28x%5E%7B2%7D%2B4x%2B3%29%5Ccdot%5Cfrac%7Bd%7D%7Bdx%7Dx%5E%7B1%2F2%7D%7D%7B%7Cx%7C%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B%5Csqrt%7Bx%7D%282x%2B4%29-%28x%5E%7B2%7D%2B4x%2B3%29%5Ccdot%5Cfrac%7B1%7D%7B2%7Dx%5E%7B-1%2F2%7D%7D%7B%7Cx%7C%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B%5Csqrt%7Bx%7D%282x%2B4%29-%5Cfrac%7Bx%5E%7B2%7D%2B4x%2B3%7D%7B2%5Csqrt%7Bx%7D%7D%7D%7B%7Cx%7C%7D)
Somando o numerador:
![y'=\dfrac{\frac{2x\cdot(2x+4)-(x^{2}+4x+3)}{2\sqrt{x}}}{|x|}\\\\\\y'=\dfrac{4x^{2}+8x-x^{2}-4x-3}{2|x|\sqrt{x}}\\\\\\y'=\dfrac{3x^{2}+4x-3}{2|x|\sqrt{x}} y'=\dfrac{\frac{2x\cdot(2x+4)-(x^{2}+4x+3)}{2\sqrt{x}}}{|x|}\\\\\\y'=\dfrac{4x^{2}+8x-x^{2}-4x-3}{2|x|\sqrt{x}}\\\\\\y'=\dfrac{3x^{2}+4x-3}{2|x|\sqrt{x}}](https://tex.z-dn.net/?f=y%27%3D%5Cdfrac%7B%5Cfrac%7B2x%5Ccdot%282x%2B4%29-%28x%5E%7B2%7D%2B4x%2B3%29%7D%7B2%5Csqrt%7Bx%7D%7D%7D%7B%7Cx%7C%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B4x%5E%7B2%7D%2B8x-x%5E%7B2%7D-4x-3%7D%7B2%7Cx%7C%5Csqrt%7Bx%7D%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B3x%5E%7B2%7D%2B4x-3%7D%7B2%7Cx%7C%5Csqrt%7Bx%7D%7D)
Veja que x não pode ser negativo, pois existe uma raiz de x na derivada. Portanto, o módulo de x é x:
![\boxed{\boxed{y'=\dfrac{3x^{2}+4x-3}{2x\sqrt{x}}}} \boxed{\boxed{y'=\dfrac{3x^{2}+4x-3}{2x\sqrt{x}}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7By%27%3D%5Cdfrac%7B3x%5E%7B2%7D%2B4x-3%7D%7B2x%5Csqrt%7Bx%7D%7D%7D%7D)
__________________________________
Outra forma (mais simples):
![y=\dfrac{x^{2}+4x+3}{\sqrt{x}}=\dfrac{x^{2}+4x+3}{x^{1/2}}\\\\\\y=\dfrac{x^{2}}{x^{1/2}}+\dfrac{4x^{1}}{x^{1/2}}+\dfrac{3}{x^{1/2}}\\\\\\y=x^{3/2}+4x^{1/2}+3x^{-1/2} y=\dfrac{x^{2}+4x+3}{\sqrt{x}}=\dfrac{x^{2}+4x+3}{x^{1/2}}\\\\\\y=\dfrac{x^{2}}{x^{1/2}}+\dfrac{4x^{1}}{x^{1/2}}+\dfrac{3}{x^{1/2}}\\\\\\y=x^{3/2}+4x^{1/2}+3x^{-1/2}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7Bx%5E%7B2%7D%2B4x%2B3%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cdfrac%7Bx%5E%7B2%7D%2B4x%2B3%7D%7Bx%5E%7B1%2F2%7D%7D%5C%5C%5C%5C%5C%5Cy%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7Bx%5E%7B1%2F2%7D%7D%2B%5Cdfrac%7B4x%5E%7B1%7D%7D%7Bx%5E%7B1%2F2%7D%7D%2B%5Cdfrac%7B3%7D%7Bx%5E%7B1%2F2%7D%7D%5C%5C%5C%5C%5C%5Cy%3Dx%5E%7B3%2F2%7D%2B4x%5E%7B1%2F2%7D%2B3x%5E%7B-1%2F2%7D)
Derivando:
![y'=\dfrac{3}{2}x^{(3/2)-1}+\dfrac{1}{2}4x^{(1/2)-1}-\dfrac{1}{2}3x^{(-1/2)-1}\\\\\\y'=\dfrac{3}{2}x^{1/2}+\dfrac{1}{2}4x^{-1/2}-\dfrac{1}{2}3x^{-3/2}\\\\\\y'=\dfrac{3}{2}\sqrt{x}+\dfrac{4}{2}\dfrac{1}{\sqrt{x}}-\dfrac{3}{2}\dfrac{1}{\sqrt{x^{3}}}\\\\\\y'=\dfrac{3}{2}\dfrac{\sqrt{x^{4}}}{\sqrt{x^{3}}}+\dfrac{4}{2}\dfrac{\sqrt{x^{2}}}{\sqrt{x^{3}}}-\dfrac{3}{2}\dfrac{1}{\sqrt{x^{3}}}\\\\\\y'=\dfrac{3\sqrt{x^{4}}+4\sqrt{x^{2}}-3}{2\sqrt{x^{3}}} y'=\dfrac{3}{2}x^{(3/2)-1}+\dfrac{1}{2}4x^{(1/2)-1}-\dfrac{1}{2}3x^{(-1/2)-1}\\\\\\y'=\dfrac{3}{2}x^{1/2}+\dfrac{1}{2}4x^{-1/2}-\dfrac{1}{2}3x^{-3/2}\\\\\\y'=\dfrac{3}{2}\sqrt{x}+\dfrac{4}{2}\dfrac{1}{\sqrt{x}}-\dfrac{3}{2}\dfrac{1}{\sqrt{x^{3}}}\\\\\\y'=\dfrac{3}{2}\dfrac{\sqrt{x^{4}}}{\sqrt{x^{3}}}+\dfrac{4}{2}\dfrac{\sqrt{x^{2}}}{\sqrt{x^{3}}}-\dfrac{3}{2}\dfrac{1}{\sqrt{x^{3}}}\\\\\\y'=\dfrac{3\sqrt{x^{4}}+4\sqrt{x^{2}}-3}{2\sqrt{x^{3}}}](https://tex.z-dn.net/?f=y%27%3D%5Cdfrac%7B3%7D%7B2%7Dx%5E%7B%283%2F2%29-1%7D%2B%5Cdfrac%7B1%7D%7B2%7D4x%5E%7B%281%2F2%29-1%7D-%5Cdfrac%7B1%7D%7B2%7D3x%5E%7B%28-1%2F2%29-1%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B3%7D%7B2%7Dx%5E%7B1%2F2%7D%2B%5Cdfrac%7B1%7D%7B2%7D4x%5E%7B-1%2F2%7D-%5Cdfrac%7B1%7D%7B2%7D3x%5E%7B-3%2F2%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B3%7D%7B2%7D%5Csqrt%7Bx%7D%2B%5Cdfrac%7B4%7D%7B2%7D%5Cdfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D-%5Cdfrac%7B3%7D%7B2%7D%5Cdfrac%7B1%7D%7B%5Csqrt%7Bx%5E%7B3%7D%7D%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B3%7D%7B2%7D%5Cdfrac%7B%5Csqrt%7Bx%5E%7B4%7D%7D%7D%7B%5Csqrt%7Bx%5E%7B3%7D%7D%7D%2B%5Cdfrac%7B4%7D%7B2%7D%5Cdfrac%7B%5Csqrt%7Bx%5E%7B2%7D%7D%7D%7B%5Csqrt%7Bx%5E%7B3%7D%7D%7D-%5Cdfrac%7B3%7D%7B2%7D%5Cdfrac%7B1%7D%7B%5Csqrt%7Bx%5E%7B3%7D%7D%7D%5C%5C%5C%5C%5C%5Cy%27%3D%5Cdfrac%7B3%5Csqrt%7Bx%5E%7B4%7D%7D%2B4%5Csqrt%7Bx%5E%7B2%7D%7D-3%7D%7B2%5Csqrt%7Bx%5E%7B3%7D%7D%7D)
Como vimos, x deve ser positivo, pois existe raiz de x³ (e x³ é negativa se x < 0), portanto:
![\boxed{\boxed{y'=\dfrac{3x^{2}+4x-3}{2\sqrt{x^{3}}}}} \boxed{\boxed{y'=\dfrac{3x^{2}+4x-3}{2\sqrt{x^{3}}}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7By%27%3D%5Cdfrac%7B3x%5E%7B2%7D%2B4x-3%7D%7B2%5Csqrt%7Bx%5E%7B3%7D%7D%7D%7D%7D)
_________________________________
Pode resolver pela regra do quociente ou simplificando a expressão
Regra do quociente:
Somando o numerador:
Veja que x não pode ser negativo, pois existe uma raiz de x na derivada. Portanto, o módulo de x é x:
__________________________________
Outra forma (mais simples):
Derivando:
Como vimos, x deve ser positivo, pois existe raiz de x³ (e x³ é negativa se x < 0), portanto:
Niiya:
Por que (3/2)raiz de x?
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás