• Matéria: Matemática
  • Autor: jotariro
  • Perguntado 9 anos atrás

1)sabendo que log 2 = a e log3 = b, calcule, em função de a e b:
a)log 6
b)log 1,5
c)log 5
d) log 30
e)log1/4
f)log 72
g)log0,3
h)log∛1,8
i)log 0,024
j)log 0,75


Anônimo: Ainda vou conferir.

Respostas

respondido por: Anônimo
592
a) log6}
\\\\
log2 \cdot 3
\\\\
log2+log3
\\\\
\boxed{\boxed{a+b}}


b) log1,5
\\\\
log\frac{3}{2}
\\\\
log3-log2
\\\\
\boxed{\boxed{b-a}}


c) log5
\\\\
log\frac{10}{2}
\\\\
log10-log2
\\\\
\boxed{\boxed{1-a}}


d) log30
\\\\
log2\cdot 3 \cdot 5
\\\\
log2+log3+log5
\\\\
a+b+(1-a)
\\\\
a+b+1-a
\\\\
\boxed{\boxed{b+1}}


e) log\frac{1}{4}
\\\\
log1+log2^{2}
\\\\
0+2 \cdot log2
\\\\
\boxed{\boxed{2a}}


f)log72
\\\\
log3^{2} \cdot 2^{2} \cdot 2
\\\\
log3^{2}+log2^{2}+log2
\\\\
2 \cdot log3 + 2 \cdot log2+log2
\\\\
2b+2a+a
\\\\
\boxed{\boxed{2b+3a}} 


g) log0,3
\\\\
log\frac{3}{10}
\\\\
log3-log10
\\\\
\boxed{\boxed{b-1}}


h) log \sqrt[3]{1,8}
\\\\
log1,8^{\frac{1}{3}} 
\\\\
\frac{1}{3} \cdot (log\frac{18}{10})
\\\\
\frac{1}{3} \cdot (log18-log10)
\\\\
\frac{1}{3} \cdot (log 3^{2} \cdot 2 - 1)
\\\\
\frac{1}{3} \cdot (2log3+log2-1)
\\\\
\frac{1}{3} \cdot (2b+a-1)
\\\\
\boxed{\boxed{\frac{2b}{3}+\frac{a}{3}-\frac{1}{3}}}


i) log0,024
\\\\
log\frac{24^{\div 8}}{1000^{\div 8}}
\\\\
log\frac{3}{125}
\\\\
log3-log125
\\\\
b-log5^{3}
\\\\
b-3 \cdot log5
\\\\
b-3 \cdot (1-a)
\\\\
\boxed{\boxed{b-3+3a}}


j) log0,75
\\\\
log\frac{75}{100}
\\\\
log\frac{3}{4}
\\\\
log3-log4
\\\\
b-log2^{2}
\\\\
b-2log2
\\\\
\boxed{\boxed{b-2a}}

Anônimo: Acho que pronto. =)
jotariro: obrigado, muito obrigado mesmo. te amo cara hô.kkkkksem ofensas
Anônimo: huashaushu pelo jeito é urgente mesmo. Relaxa, se precisar tamo ae
jotariro: vlw, tem face??
Perguntas similares