Respostas
Olá! Segue a resposta com algumas explicações.
(I)Sabendo-se que uma equação do segundo grau é uma igualdade do tipo ax²+bx+c=0 (com a necessariamente diferente de zero, caso contrário, o termo ax² zeraria e ter-se-ia uma equação do primeiro grau), inicialmente, para melhor entendimento das demais etapas da resolução, pode-se proceder à determinação dos coeficientes por meio de comparação entre a equação fornecida e a forma genérica da equação do segundo grau:
1.x² + 8.x - 9 = 0 (Veja a Observação 1.)
a.x² + b.x + c = 0
Coeficientes: a = 1, b = 8, c = (-9)
OBSERVAÇÃO 1: Quando o coeficiente for 1, ele pode ser omitido, pois está subentendido (assim, em vez de 1.x², tem-se apenas x²). No caso de coeficiente -1, pode-se escrever apenas o sinal de negativo (assim, em vez de -1.x, tem-se -x).
(II)Cálculo do discriminante, utilizando-se dos coeficientes:
Δ = b² - 4 . a . c
Δ = (8)² - 4 . (1) . (-9) ⇒
Δ = 64 - 4 . (1) . (-9) ⇒
Δ = 64 - 4 . (-9) ⇒ (Veja a Observação 2.)
Δ = 64 + 36 ⇒
Δ = 100
OBSERVAÇÃO 2: Na parte destacada, aplicou-se a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam em sinal de positivo (+).
→Como o discriminante (Δ) resultou em um valor maior que zero, a equação x²+8x-9=0 terá duas raízes diferentes.
(IV)Aplicação da fórmula de Bhaskara (ou fórmula resolutiva de equação do segundo grau), utilizando-se dos coeficientes e do discriminante:
x = (-b ± √Δ) / 2 . a ⇒
x = (-(8) ± √100) / 2 . (1) ⇒
x = (-8 ± 10) / 2 ⇒
x' = (-8 + 10) / 2 = 2/2 ⇒ x' = 1
x'' = (-8 - 10) / 2 = -18/2 ⇒ x'' = -9
Resposta: As raízes da equação são -9 e 1.
Outras maneiras, porém mais formais, de indicar a resposta:
- S={x E R / x = -9 ou x = 1} (leia-se "o conjunto-solução é x pertence ao conjunto dos números reais, tal que x é igual a menos nove ou x é igual a um") ou
- S={-9, 1} (leia-se "o conjunto-solução é constituído pelos elementos menos nove e um".)
======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo x = -9 na equação fornecida no exercício, verifica-se que a igualdade será mantida, confirmando-se que esta é uma das raízes da equação:
1.x² + 8.x - 9 = 0 ⇒
1 . (-9)² + 8 . (-9) - 9 = 0 ⇒
1 . (-9)(-9) + 8 . (-9) - 9 = 0 ⇒
1 . 81 - 72 - 9 = 0 ⇒
81 - 72 - 9 = 0 ⇒
81 - 81 = 0 ⇒
0 = 0 (Provado que x = -9 é solução (raiz) da equação.)
→Substituindo x = 1 na equação fornecida no exercício, verifica-se que a igualdade será mantida, confirmando-se que esta é uma das raízes da equação:
1.x² + 8.x - 9 = 0 ⇒
1 . (1)² + 8 . (1) - 9 = 0 ⇒
1 . (1)(1) + 8 . (1) - 9 = 0 ⇒
1 . 1 + 8 - 9 = 0 ⇒
1 + 8 - 9 = 0 ⇒
9 - 9 = 0 ⇒
0 = 0 (Provado que x = 1 é solução (raiz) da equação.)
→Veja outras tarefas sobre equação do segundo grau e resolvidas por mim:
https://brainly.com.br/tarefa/26913535
brainly.com.br/tarefa/26691587
brainly.com.br/tarefa/26679455
brainly.com.br/tarefa/26677560
brainly.com.br/tarefa/26408713
brainly.com.br/tarefa/26219476
brainly.com.br/tarefa/3031136
brainly.com.br/tarefa/20580041