• Matéria: Matemática
  • Autor: julinhart
  • Perguntado 9 anos atrás

Dispondo dos algarismos 0, 1, 2, 3, 4, 5 e 6, determine:
a) a quantidade de números pares de três algarismos que podemos formar;
b) a quantidade de números divisíveis por 5,compostos por três algarismos distintos que podemos formar;
c) a quantidade de números de três algarismos distintos maiores que 321 que podemos formar.

Respostas

respondido por: silvageeh
28

A quantidade de números pares de três algarismos é 168; A quantidade de números divisíveis por 5 é 55; A quantidade de números maiores que 321 é 105.

a) Vamos considerar que os traços a seguir representam os números de três algarismos: _ _ _.

Para o primeiro traço, existem 6 números, pois não podemos colocar o 0;

Para o segundo traço, existem 7 números.

Para o terceiro traço, existem 4 números, pois o número deverá ser par.

Portanto, pelo Princípio Multiplicativo, existem 6.7.4 = 168 números pares.

b) Um número é divisível por 5 quando termina em 0 ou 5.

Novamente, vamos considerar que os traços a seguir representam todos os números: _ _ _.

Perceba que os três algarismos serão distintos.

Assim, se o número terminar em 0, temos:

Para o primeiro traço, existem 6 possibilidades;

Para o segundo traço, existem 5 possibilidades.

Logo, existem 6.5 = 30 números.

Se o número terminar em 5, temos:

Para o primeiro traço, existem 5 possibilidades;

Para o segundo traço, existem 5 possibilidades.

Logo, existem 5.5 = 25 números.

O total é igual a 30 + 25 = 55.

c) Se os números serão maiores que 321, então temos as possibilidades:

[3] 3.5 = 15

[4] 6.5 = 30

[5] 6.5 = 30

[6] 6.5 = 30

ou seja, um total de 15 + 30 + 30 + 30 = 105 números.

Para mais informações sobre Análise Combinatória, acesse: https://brainly.com.br/tarefa/19903142

Anexos:
Perguntas similares