1) Uma pirâmide hexagonal regular tem h = 8 cm de altura e a aresta da sua base mede3✓ 3cm. Calcule: a) O apótema da pirâmide; b) O apótema da base; c) A área da base; d) A área lateral; e) A área total; f) O volume.
Respostas
respondido por:
10
Resposta:
a) 9,18 cm
b) 4,5 cm
c) 70,15 cm²
d) 143,10 cm²
e) 213,25 cm²
f) 187,07 cm³
Explicação passo-a-passo:
O hexágono da base pode ser dividido em 6 triângulos equiláteros de lado medindo 3√3 cm (conforme a figura à esquerda). Portanto, a altura deles, ou seja, o apótema será:
Ainda pela figura (à direita), o apótema da pirâmide forma um triângulo retângulo com a altura e o apótema da base, portanto, por Pitágoras:
A área da base é feita calculando área de triângulos equiláteros multiplicado por 6, assim:
A lateral da pirâmide é formada por 6 trinângulos de altura (apótema da pirâmide) 9,18 cm e base (aresta da base) 3√3 cm, assim:
A área total é a soma das duas áreas achadas anteriormente:
O volume da uma pirâmide é:
Anexos:
matheuszzzz:
????
Perguntas similares
5 anos atrás
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás
7 anos atrás
8 anos atrás
8 anos atrás