• Matéria: Matemática
  • Autor: garotodeipanemapobre
  • Perguntado 6 anos atrás

Resolva: \lim_{x\to 1 }\frac{\sqrt{x}-1}{\sqrt{2x+3}-\sqrt{5}}

Respostas

respondido por: Anônimo
5

Explicação passo-a-passo:

\sf lim_{x\to~1}~\dfrac{\sqrt{x}-1}{\sqrt{2x+3}-\sqrt{5}}

\sf =lim_{x\to~1}~\dfrac{\sqrt{x}-1}{\sqrt{2x+3}-\sqrt{5}}\cdot\dfrac{\sqrt{2x+3}+\sqrt{5}}{\sqrt{2x+3}+\sqrt{5}}

\sf =lim_{x\to~1}~\dfrac{(\sqrt{x}-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{(\sqrt{2x+3})^2-(\sqrt{5})^2}

\sf =lim_{x\to~1}~\dfrac{(\sqrt{x}-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{2x+3-5}

\sf =lim_{x\to~1}~\dfrac{(\sqrt{x}-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{2x-2}

\sf =lim_{x\to~1}~\dfrac{(\sqrt{x}-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{2\cdot(x-1)}

\sf =lim_{x\to~1}~\dfrac{(\sqrt{x}-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{2\cdot(x-1)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+1}

\sf =lim_{x\to~1}~\dfrac{[(\sqrt{x})^2-1^2]\cdot(\sqrt{2x+3}+\sqrt{5})}{2\cdot(x-1)\cdot(\sqrt{x}+1)}

\sf =lim_{x\to~1}~\dfrac{(x-1)\cdot(\sqrt{2x+3}+\sqrt{5})}{2\cdot(x-1)\cdot(\sqrt{x}+1)}

\sf =lim_{x\to~1}~\dfrac{\sqrt{2x+3}+\sqrt{5}}{2\cdot(\sqrt{x}+1)}

\sf =\dfrac{\sqrt{2\cdot1+3}+\sqrt{5}}{2\cdot(\sqrt{1}+1)}

\sf =\dfrac{\sqrt{2+3}+\sqrt{5}}{2\cdot(1+1)}

\sf =\dfrac{\sqrt{5}+\sqrt{5}}{2\cdot2}

\sf =\dfrac{2\sqrt{5}}{4}

\sf =\dfrac{\sqrt{5}}{2}


garotodeipanemapobre: esse lente kakaka
Anônimo: ^_^
garotodeipanemapobre: paulo ricardo passa o ''contanto'' pra me tirar umas duvidas de limete?
garotodeipanemapobre: limite**
Perguntas similares