(PORTAL OBMEP) Uma indústria produz mensalmente x lotes de um produto. O faturamento men- sal resultante da venda destes lotes é v (x) = 3x2 — 12x e o custo mensal de produção é dado por c(x) = 5x2 — 40x — 40. Qual é o número de lotes mensais que essa indústria deve vender para obter lucro máximo?
Respostas
respondido por:
2
A quantidade de lotes mensais que essa indústria deve vender para obter lucro máximo é 7 lotes.
- Considere que o lucro obtido pela empresa seja a diferença entre o faturamento mensal resultante da venda destes lotes e o custo mensal de produção. Do enunciado tem-se:
Faturamento mensal resultante da venda destes lotes: v(x) = 3x² − 12x
Custo mensal de produção: c(x) = 5x² − 40x − 40
Quantidade de lotes do produto produzidos mensalmente: x
- Subtraia c(x) de v(x) para obter a função ℓ(x) que representa o lucro.
ℓ(x) = v(x) − c(x)
ℓ(x) = 3x² − 12x − (5x² − 40x − 40)
ℓ(x) = 3x² − 12x − 5x² + 40x + 40
ℓ(x) = −2x² + 28x + 40
- Observe que a função que representa o lucro é uma função do segundo grau cujo coeficiente de x² é negativo e portanto a função é representada por uma parábola de concavidade para baixo.
- O valor máximo de uma parábola de concavidade para baixo é obtido em seu vértice, portanto para determinar o valor de x para um lucro máximo determine a abscissa do vértice (xᵥ) para obter a quantidade (x) de lotes do produto produzidos mensalmente para um lucro máximo.
- Os coeficientes da função ℓ(x) são:
a = −2
b = 28
c = 40
- A abscissa do vértice é obtida por:
⟹ Substitua os valores dos coeficientes.
A quantidade de lotes mensais que essa indústria deve vender para obter lucro máximo é 7 lotes.
Aprenda mais em:
- https://brainly.com.br/tarefa/33504959
Anexos:
Perguntas similares
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás
8 anos atrás
8 anos atrás