• Matéria: Matemática
  • Autor: Cleidios
  • Perguntado 6 anos atrás

alguém pode me ajudar a resolver essas três questões na moral?​

Anexos:

Respostas

respondido por: Kin07
1

Resposta:

09)

a)

\sf 5^{-x+1} = 1\\ 5^{-x+1} = 5^0\\-x + 1 = 0\\1 = x \\\framebox {x = 1}

b)

\sf 3^{2x + 7} = - 9 \\3^{2x + 7} = - 3^2 \\ 2x + 7 = - 2\\2x = - 2 - 7\\2x = - 9\\\\\boxed { \sf x = - \dfrac{9}{2}}

10)

a)

\sf \left ( \dfrac{3}{5} \right )^x = \left ( \dfrac{5}{3} \right )

\sf \left ( \dfrac{3}{5} \right )^x = \left ( \dfrac{3}{5} \right )^{-1}

\framebox { \sf x = - 1 }

b)

\sf 27^{x + 1} = 9^{- x + 5}\\3^3^{(x+ 1)} = 3^2^{(- x + 5)} \\3(x+ 1) = 2(- x + 5)\\3x  + 3 = -2x + 10 \\3x + 2x = 10 - 3\\5x = 7 \\\\\boxed {\sf  x = \dfrac{7}{5} }

c)

\sf \left ( \dfrac{2}{7} \right )^x = \dfrac{49}{4}

\sf \left ( \dfrac{2}{7} \right )^x =\left ( \dfrac{4}{49} \right)^{-1}

\sf \left ( \dfrac{2}{7} \right )^x =\left ( \dfrac{2}{7} \right)^{2^{(-1)}}

\sf x = 2(-1) \\\\\framebox { \sf x = - 2}

d)

\sf 2^{x^{2} - 4} = 0 não solução  para x \sf \in R.

11)

a)

\sf (2^x)^2 = 16 \\2^{2x} = 2^4 \\2x = 4\\\\x= \dfrac{4}{2} \\\\\framebox {\sf x = 2 }

b)

\sf 2^{x^2} = 16 \\2^{x^2} = 2^4\\ x^{2}  = 4 \\x = \pm \sqrt{4} \\\\\framebox { \sf x = - 4} \\\\\framebox { \sf x =  4 }

c)

\sf (3^x)^{2} = 3^{x^2} \\2x = x^{2} \\x^{2}  = 2x \\\sf x^{2}  -2x = 0\\\sf x(x-2) = 0\\\\\boxed{\sf  x_1 = 0 }\\\\\sf (x - 2) = 0\\\sf x - 2 = 0\\\\\boxed {\sf  x_2 = 2 }

Explicação passo-a-passo:


Cleidios: vlw Zé! ✌️
Perguntas similares