• Matéria: Matemática
  • Autor: overwatchbr001
  • Perguntado 6 anos atrás

64^(x-1) = 8^(x+6)
27^x = 3^x-12
7^x = 1/49
2^x = 1/128
5^x = 625


overwatchbr001: ^ = elevado

Respostas

respondido por: CyberKirito
0

Caso tenha dificuldades para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/32772347

1)

\tt{a)}~\sf{64^{x-1}=8^{x+6}}\\\sf{(8^2)^{x-1}=8^{x+6}}\\\sf{8^{2x-2}=8^{x+6}

\sf{2x-2=x+6}\\\sf{2x-x=6+2}\\\huge\boxed{\boxed{\boxed{\boxed{\sf{x=8}}}}}

================================================================

2)

\sf{27^x=3^{x-12}}\\\sf{(3^3)^x=3^{x-12}}\\\sf{3^{3x}=3^{x-12}}\\\sf{3x=x-12}\\\sf{3x-x=12}\\\sf{2x=12}\\\sf{x=\dfrac{12}{2}}\\\huge\boxed{\boxed{\boxed{\boxed{\sf{x=6}}}}}

================================================================

3)

\sf{7^x=\dfrac{1}{49}}\\\sf{7^x=7^{-2}}\\\huge\boxed{\boxed{\boxed{\boxed{\sf{x=-2}}}}}

=================================================================

4)

\sf{2^x=\dfrac{1}{128}}\\\sf{2^x=2^{-7}}\\\huge\boxed{\boxed{\boxed{\boxed{\sf{x=-7}}}}}

=================================================================

5)

\sf{5^x=625}\\\sf{5^x=5^4}\\\huge\boxed{\boxed{\boxed{\boxed{\sf{x=4}}}}}

=================================================================

\Huge\displaystyle\sf{\ell ife=\int_{birth}^{death}\dfrac{happiness}{time}~dtime}

Perguntas similares