Respostas
Resposta:
Primeiro triângulo: x=60°, equilátero, acutângulo.
Segundo triângulo: x=30°, isósceles, obtusângulo.
Terceiro triângulo: x=40°, isósceles, acutângulo.
Quarto triângulo: x=57°, escaleno, retângulo.
Explicação passo-a-passo:
Primeiro triângulo:
• Como os lados desse triângulo são iguais, classificamos este como equilátero.
• Todos os ângulos de um triângulo equilátero possuem o mesmo valor. Portanto, se a soma dos ângulos internos de um triângulo corresponde a 180° e o triângulo possui três ângulos internos, podemos dividir 180° por 3. Assim, x=60°
• O triângulo possui 3 ângulos de 60°, que são menores que 90° (ângulos agudos). Portanto, é um acutângulo.
Segundo triângulo:
• 2 lados do triâgulo possuem medidas iguais. Portanto, o triângulo é isósceles.
• Podemos obter x de 2 maneiras:
MÉTODO 1:
Os ângulos da base são iguais. Portanto, podemos obter x pela seguinte expressão:
x=(180°-120°)÷2
x=60°÷2
x=30°
MÉTODO 2:
Fazendo uma reta na base do triângulo (está na imagem), obtemos um ângulo de 150°. Como a reta possui 180° e os ângulos da base são iguais,
x=180°-150°
x=180°-150°x=30°
• Um ângulo do triângulo (120°) é obtuso. Portanto, este triângulo é um obtusângulo.
Terceiro triângulo:
• 2 lados do triâgulo possuem medidas iguais. Portanto, o triângulo é isósceles.
• Fazendo uma reta na base do triângulo (está na imagem), obtemos um ângulo de 110°. Como a reta possui 180° e os ângulos da base são iguais,
a=180°-110° (a é o ângulo da base)
a=70°
2a=140°
x=180°‐2a
x=180°-140°
x=40°
• Todos os ângulos são agudos. Portanto, é um acutângulo.
Quarto triângulo:
• Os lados do triângulos possuem medidas diferentes. Portanto, é um triângulo escaleno.
• Temos a medida de dois ângulos (90° e 37°). Sabendo que a soma dos ângulos internos de um triângulo corresponde a 180°, temos a expressão:
x=180°-(90°+37°)
x=180°-127°
x=53°
• O triângulo possui um ângulo de 90°. Portanto, é retângulo.