• Matéria: Matemática
  • Autor: P4CK1M4N
  • Perguntado 5 anos atrás

Determine as integrais

Anexos:

Respostas

respondido por: Anônimo
1

Resposta:

OLÁ

VAMOS A SUA PERGUNTA:⇒⇒

A:=====>

\sf  \displaystyle\int[2cos(3x)+x\sqrt{x^2+1}]dx

\sf  \displaystyle\int2cos(3x)+x\sqrt{x^2+1}~dx

\sf  =\displaystyle\int2cos(3x)dx+\displaystyle\int x\sqrt{x^2+1}~dx

\sf  \displaystyle\int2cos(3x)dx=\dfrac{2}{3}sin(3x)

\sf  \displaystyle\int x\sqrt{x^2+1} ~ dx=\dfrac{1}{3}(x^2+1)^\dfrac{3}{2}

\sf  =\dfrac{2}{3}sin(3x)+\dfrac{1}{3} (x^2+1)^\dfrac{3}{2}

\boxed{\bold{\displaystyle{\clubsuit\ \spadesuit\ \maltese\ \sf  \red{ =\dfrac{2}{3}sin(3x)+\dfrac{1}{3} (x^2+1)^\dfrac{3}{2}}}+C}}}\ \checkmark← RESPOSTA.

B:=====>

\sf \displaystyle\int\dfrac{x^2+2x}{\sqrt{x^3+3x^2+1} }dx

=\sf \displaystyle\int\dfrac{1}{3\sqrt{u} }~du

\sf=\dfrac{1}{3}\times  \displaystyle\int\dfrac{1}{\sqrt{u} }~du

\sf=\dfrac{1}{3}\times  \displaystyle\int\dfrac{1}{u^\dfrac{1}{2}  }~du

\sf=\dfrac{1}{3}\times  \displaystyle\int u^-^\dfrac{1}{2}}du

\sf =\dfrac{1}{3 }\times\dfrac{u-\dfrac{1}{2}+1 }{-\dfrac{1}{2}+1 }

\sf =\dfrac{1}{3 }\times\dfrac{(x^3+3x^2+1)-\dfrac{1}{2}+1 }{-\dfrac{1}{2}+1 }

\sf =\dfrac{2}{3 }\sqrt{x^3+3x^2+1}

\boxed{\bold{\displaystyle{\clubsuit\ \spadesuit\ \maltese\ \sf \green{=\dfrac{2}{3 }\sqrt{x^3+3x^2+1}+C}}}}\ \checkmark← RESPOSTA.

Explicação passo-a-passo:

ESPERO TER AJUDADO

Anexos:

P4CK1M4N: god
Anônimo: :)
Perguntas similares