1. Calcule o valor dos logaritmos a seguir.
a) log3 81
b) log 1/5 625
c) log 8 √32
d) log 3√2 5√16
e) log 0.01
f) log 2/3 (32/243)
g) log 5 (1/7√125)
h) log 4/25 4√125/8)
Respostas
Resposta:
a) 4
b) -4
c) 5/6
d) log(400) / log(18)
e) -2
f) 5
g) 3/2 - log(7)/log(5)
h) (3/2 log(5) - log(2)) / (2log(2) - 2log(5))
Explicação passo-a-passo:
a) log3 81 = x
3^x = 81
3^x = 3^4
x = 4
b) log 1/5 625 = x
(1/5)^x = 625
5^-x = 625
5^-x = 5^4
x = -4
c) log 8 √32 = x
8^x = 32^(1/2)
(2^3)^x = (2^5)^(1/2)
2^(3x) = 2^(5/2)
3x = 5/2
x = 5/6
d) log 3√2 5√16 = x
(3*2^(1/2))^x = 5*4
18^(1/2)^x = 20
18^(x/2) = 20
18^x = 400
log (18^x) = log (400)
x * log(18) = log(400)
x = log(400) / log(18)
e) log 0.01 = x
10^x = 0,01
10^x = 10^-2
x = -2
f) log 2/3 (32/243) = x
(2/3)^x = 32/243
(2/3)^x = 2^5/3^5
(2/3)^x = (2/3)^5
x = 5
g) log 5 (1/7√125) = x
5^x = 5/7*5^(1/2)
log (5^x) = log (5/7*5^(1/2))
x * log(5) = log(5) - log(7) + 1/2 * log(5)
x = (3/2 log (5) - log(7)) / log(5)
x = 3/2 - log(7)/log(5)
h) log 4/25 4√125/8) = x
(4/25)^x = (125^(1/2))/2
(2/5)^(2x) = 5/2 * 5^(1/2)
log ((2/5)^(2x)) = log (5/2 * 5^(1/2))
2x * (log(2) - log(5)) = log(5) - log(2) + 1/2 * log(5)
x = (3/2 log(5) - log(2)) / (2log(2) - 2log(5))
log (2/5)^2x = log (4 * (5/2)^3)
log (2/5)^2x = log 2² + log (2/5)^-3
log (2/5)^2x - log (2/5)^-3 = log2²
log (2/5)^2 (4*(5/2)^(3/2)) = x
log (2/5)^2 (4*(2/5)^(-3/2)) = x
(2/5)^2x = 4 * (2/5)^(-3/2)
log ((2/5)^2x) = log (4 * (2/5)^(-3/2))
2x * log (2/5) = log (2²) + log ((2/5)^(-3/2))
x = (2*log (2) -(3/2)*log (2/5)) / 2log (2/5)
x = -3/4 + log(2)/log(2/5)
Calculando o valor dos logaritmos, obtemos:
a) log₃ 81 = 4
b) log(1/5) 625 = -4
c) log₈ √32 = 5/6
d) log(3√2) 5√16 = log 400/log 18
e) log₁₀ 0,01 = -2
f) log(2/3) 32/243 = 5
g) log₅ 1/7·√125 = (-3/2) - log 7/log 5
h) log 4/25 4√125/8) = log 2/log (5/2) - 3/4
Logaritmos
Pela definição de logaritmo, sabemos que a base do logaritmo elevado ao resultado do mesmo é igual ao logaritmando, ou seja:
logₐ x = b
aᵇ = x
Para responder essa questão, devemos aplicar a definição acima e calcular os logaritmos.
a)
81 = 3ᵇ
3⁴ = 3ᵇ
b = 4
log₃ 81 = 4
b)
(1/5)ᵇ = 625
5⁻ᵇ = 5⁴
b = -4
log(1/5) 625 = -4
c)
log₈ √32
8ᵇ = √32
(2³)ᵇ = √2⁵
Temos que √2⁵ = 2^(5/2), então:
3b = 5/2
b = 5/6
log₈ √32 = 5/6
d)
(3√2)ᵇ = 5√16
Elevando ao quadrado:
18ᵇ = 400
Aplicando o logaritmo:
log 18ᵇ = log 400
b·log 18 = log 400
b = log 400/log 18
log(3√2) 5√16 = log 400/log 18
e)
10ᵇ = 0,01
10ᵇ = 10⁻²
b = -2
log₁₀ 0,01 = -2
f)
(2/3)ᵇ = (32/243)
(2/3)ᵇ = (2/3)⁵
b = 5
log(2/3) 32/243 = 5
g)
5ᵇ = 1/7·√125
5ᵇ = 1/7·5^(3/2)
log 5ᵇ = log 5^(-3/2)/7
b·log 5 = (-3/2)·log 5 - log 7
b = (-3/2) - log 7/log 5
log₅ 1/7·√125 = (-3/2) - log 7/log 5
h)
(4/25)ᵇ = 4√125/8
[(2/5)²]ᵇ = 2²·(5/2)^(3/2)
log (2/5)²ᵇ = log 2² + log (5/2)^(3/2)
log (5/2)-²ᵇ = log 2² + log (5/2)^(3/2)
-2b·log (5/2) = 2 log 2 + (3/2)·log (5/2)
b = [2 log 2 + (3/2)·log (5/2)]/-2·log(5/2)
b = log 2/log (5/2) - (3/4)
log 4/25 4√125/8) = log 2/log (5/2) - 3/4
Leia mais sobre logaritmos em:
https://brainly.com.br/tarefa/18944643
#SPJ2