• Matéria: Matemática
  • Autor: weslleywill1995
  • Perguntado 5 anos atrás

Determine as equações das retas tangente e normal à curva y = x² − 1 em x = 2.

Respostas

respondido por: solkarped
4

✅ Após desenvolver os cálculos, concluímos que as equações reduzidas das retas tangente e normal à referida curva pelo respectivo ponto de tangência são respectivamente:

        \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf t: y = 4x - 5\:\:\:}}\end{gathered}$}

    \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf n : y = -\frac{1}{4}x + \frac{14}{4}\:\:\:}}\end{gathered}$}

Sejam os dados:

                \Large\begin{cases} y = x^{2} - 1\\x = 2\end{cases}

Observe que:

                 \Large\displaystyle\text{$\begin{gathered} y = f(x)\end{gathered}$}

Para resolver esta questão, devemos:

  • Determinar as coordenadas do ponto de tangência "T" entre as curvas. Para isso, fazemos:

             \Large\displaystyle\text{$\begin{gathered} T = (X_{T},\,Y_{T})\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered} = \left[x,\,f(x)\right]\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered} = \left[2,\,2^{2} - 1\right]\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered} = \left[2,\,4 - 1\right]\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered} = \left[2,\,3\right]\end{gathered}$}

           \Large\displaystyle\text{$\begin{gathered} \therefore\:\:\:T(2, 3)\end{gathered}$}

  • Calcular a declividade - coefiiciente angular - da reta tangente "t". Para isso, devemos calcular a derivada primeira da função no ponto "T". Então, fazemos:

                 \Large\displaystyle\text{$\begin{gathered} m_{t} = \frac{\partial}{\partial x}\codt f(x)\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} = \frac{\partial}{\partial x}\codt (x^{2} - 3x)\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} = 2\cdot2^{2 - 1} - 0\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} = 2\cdot2\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} = 4\end{gathered}$}

              \Large\displaystyle\text{$\begin{gathered} \therefore\:\:\:m_{t} = 4\end{gathered}$}

  • Montar a equação da reta tangente "t". Para isso, devemos utilizar a fórmula do "ponto/declividade", ou seja:

        \Large\displaystyle\text{$\begin{gathered} \bf(I)\end{gathered}$}        \Large\displaystyle\text{$\begin{gathered} y - y_{T} = m_{t}\cdot(x - x_{T})\end{gathered}$}

        Substituindo os valores das incógnitas na equação "I", temos:

                       \Large\displaystyle\text{$\begin{gathered} y - 3 = 4\cdot(x - 2)\end{gathered}$}

                       \Large\displaystyle\text{$\begin{gathered} y - 3 = 4x - 8\end{gathered}$}

                                \Large\displaystyle\text{$\begin{gathered} y = 4x - 8 + 3\end{gathered}$}

                                \Large\displaystyle\text{$\begin{gathered} y = 4x - 5\end{gathered}$}

  • Calcular a reta normal:

                     \Large\displaystyle\text{$\begin{gathered} y - y_{T} = -\frac{1}{m_{t}}\cdot(x - x_{T})\end{gathered}$}  

                        \Large\displaystyle\text{$\begin{gathered} y - 3 = -\frac{1}{4}\cdot(x - 2)\end{gathered}$}    

                         \Large\displaystyle\text{$\begin{gathered} y - 3 = \frac{-x}{4} + \frac{2}{4}\end{gathered}$}

                                  \Large\displaystyle\text{$\begin{gathered} y = \frac{-x}{4} + \frac{2}{4} + 3\end{gathered}$}  

                                  \Large\displaystyle\text{$\begin{gathered} y = \frac{-x + 2 + 12}{4}\end{gathered}$}

                                  \Large\displaystyle\text{$\begin{gathered} y = \frac{-x + 14}{4}\end{gathered}$}

                                  \Large\displaystyle\text{$\begin{gathered} y = -\frac{1}{4}x + \frac{14}{4}\end{gathered}$}

✅ Portanto, as equações das retas tangente e normal são:

              \Large\displaystyle\text{$\begin{gathered} t: y = 4x - 5\end{gathered}$}

              \Large\displaystyle\text{$\begin{gathered} n : y = -\frac{1}{4}x + \frac{14}{4}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/40839663
  2. https://brainly.com.br/tarefa/51075132
  3. https://brainly.com.br/tarefa/39939095
  4. https://brainly.com.br/tarefa/144003
  5. https://brainly.com.br/tarefa/19960340
  6. https://brainly.com.br/tarefa/16699576
  7. https://brainly.com.br/tarefa/38258843
  8. https://brainly.com.br/tarefa/35233421

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe  \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares