RESOLVA USANDO LÓGICA MATEMÁTICA
Prove que, para qualquer inteiro positivo n, o número 2^²n — 1 é divisível por 3.
MakarovBR:
o n também está elevado
Respostas
respondido por:
1
Prova por indução:
Caso base: n = 1.
que é divisível por 3.
Caso geral: Suponha que para n > 1, esta expressão seja divisível por 3:
Provar que vale para n + 1:
Como 3.2^2n é divisível por 3 e 2^2n-1 também, logo a expressão é divisível por 3.
Portanto, está provado por indução matemática finita nos números inteiros positivos.
respondido por:
1
Resposta:
Prova por indução:
Caso base: n = 1.
que é divisível por 3.
Caso geral: Suponha que para n > 1, esta expressão seja divisível por 3:
Provar que vale para n + 1:
Como 3.2^2n é divisível por 3 e 2^2n-1 também, logo a expressão é divisível por 3.
Portanto, está provado por indução matemática finita nos números inteiros positivos.
Perguntas similares
4 anos atrás
4 anos atrás
7 anos atrás
7 anos atrás
7 anos atrás
8 anos atrás
8 anos atrás