Um casal pretende ter trêsfilhos. Determine o espaço amostral e a probabilidade
de ter um menino e uma menina entre os filhos.
Respostas
Resposta:
O sexo do segundo filho independe do sexo do primeiro, e assim sucessivamente.
As chances de ter um menino são iguais às chances de ter uma menina, isto é, 50%. Portanto, temos:
Menino = 1/2 = 50%
Menina = 1/2 = 50%
Com base nesses dados, vamos determinar as chances de ocorrer os pares fornecidos anteriormente. Para tal situação, utilizamos um desenvolvimento binomial dado por
(x + y)n, onde n equivale ao número de filhos que o casal deseja ter. Nesse binômio, x representará menino e y, menina. Observe o desenvolvimento da expressão:
(x + y)2 → (x + y) * (x + y) → x² + xy + xy + y² → x² + 2xy + y²
x (menino) = 1/2
y (menina) = 1/2
Dois meninos → x² → (1/2)² → 1/4 → 25%
Duas meninas → y² → (1/2)² → 1/4 → 25%
Um menino e uma menina → 2xy → 2 * 1/2 * 1/2 → 2/4 → 1/2 → 50%
ent
Supondo que um casal deseja ter três filhos, determine as possibilidades e probabilidades dos filhos desejados pelo casal.
(x + y)3 → (x + y) * (x + y) * (x + y) → x³ + 3x²y + 3xy² + y³
Três meninos → x³ → (1/2)³ → 1/8 → 12,5%
Dois meninos e uma menina → 3x²y → 3 * (1/2)² * 1/2 → 3 * 1/4 * 1/2 → 3/8 → 37,5%
Duas meninas e um menino → 3xy² → 3 * 1/2 * (1/2)² → 3 * 1/2 * 1/4 → 3/8 → 37,5%
Três meninas → y³ → (1/2)³ → 1/8 → 12,5%
Explicação passo-a-passo: