• Matéria: Matemática
  • Autor: marquinhosmarkstst
  • Perguntado 4 anos atrás

Encontre a integral indefinida ∫ x 2 x + 1 d x

Anexos:

Respostas

respondido por: niltonjunior20oss764
6

\boxed{I=\int{\dfrac{x^2}{x+1}dx}}

u=x+1\ \therefore\ \dfrac{du}{dx}=1\ \therefore\ du=dx

x=u-1\ \therefore\ x^2=(u-1)^2

I=\int{\dfrac{(u-1)^2}{u}du}=\int{\dfrac{u^2-2u+1}{u}du}\ \therefore

I=\int{\bigg(u-2+\dfrac{1}{u}\bigg)du}=\int{udu}-2\int{du}+\int{\dfrac{1}{u}du}\ \therefore

I=\dfrac{u^2}{2}-2u+\ln{|u|}+C\ \therefore

\boxed{I=\dfrac{(x+1)^2}{2}-2(x+1)+\ln{|x+1|}+C}

Letra D.

Perguntas similares