• Matéria: Geografia
  • Autor: antenor155
  • Perguntado 5 anos atrás

124
99
99
4-Encontre a fração geratriz de:
a)0,44444... = 0,4 =
c)2.888...
el3,454545...
b)1,252525...= 1,25 = 125-1
d)0,343434...
f)4,666... =​

Respostas

respondido por: milesandy
0

Resposta:

4- a) 4/9

c) 26/9

e) 322/99

b) 124/ 99

d) 34/99

f) 14/3

Explicação:

a) (1 equação)  x = 0,444 ...

(2 equação) 10x = 4,444...

10x - x = 4 - 0

9 x = 4

x = 4/9 é a fração que gerou a dizima 0,4444...

c) 10×= 28,888... ×= 2,888... 9×= 26 ×= 26/9

e) Adotamos x = 3,252525...

(100x = 325,2525... e diminuamos desse valor "x = 3,2525..")

100x = 325,252525...

-     x =      3,252525...

-----------------------------

99x = 322,000... (note que tornamos as casas decimais iguais a 0).

x = 322/99 (Fração irredutível)

b) 1,252525             1,252525              100x = 125,2525...      = 99x = 124   = 124/99

x = 1,252525      100x = 125,2525         -x = 1,2525                                   (simplifica)

d) x = 0,343434... (essa é nossa primeira equação)

 100x = 0,343434... × 100

100x = 34,343434... (essa é nossa segunda equação)

  100x = 34,343434...

- x = 0,343434...

99x = 34

x = 34/99

e) 4,666... = 4 + 0,666... = 4 + 6/9 = 4 + 2/3 = 12/3 + 2/3 = 14/3

Perguntas similares