• Matéria: Matemática
  • Autor: mamutepl
  • Perguntado 4 anos atrás

Calcule as derivadas de segunda ordem da função
f(x,y)=x3y− 2y2−2−4

Respostas

respondido por: MatiasHP
3

Olá Estudante!

Contendo a relação:

\huge {\boxed {\sf \bf   f  \left ( x,y  \right ) = x^3y- 2y^2-2-4  }}

✍ Primeiramente iremos derivar x e posteriormente y, adotando as seguintes propriedades:

\huge {\boxed {\boxed {\green {\sf f_{xx}  = \left ( f_x \right ) _x = \cfrac{ \partial }{ \partial x} \left ( \cfrac{\partial  f}{\partial x}  \right ) = \cfrac{\partial ^2 f}{\partial x^2}    }}}}

\huge {\boxed {\boxed {\blue {\sf f_{xy} = \left ( f_x \right )_y = \cfrac{\partial }{\partial y} \left (  \cfrac{\partial  f}{\partial  x} \right ) = \cfrac{\partial ^2f}{\partial y\partial x}  }}}}

\huge {\boxed {\boxed {\red {\sf  f_{yy} = \left (  f_x\right ) _y = \cfrac{\partial }{ \partial y} \left ( \cfrac{\partial f}{\partial y}  \right ) = \cfrac{\partial ^2f}{\partial y^2}   }}}}

\huge {\boxed {\boxed {\sf \bf f_{yx} = \left ( f_y \right )_x = \cfrac{\partial }{\partial x} \left ( \cfrac{\partial  f}{\partial y}  \right ) = \cfrac{\partial ^2f }{\partial x \partial  y}   }}}

➡️ Portanto:

\huge {\boxed {\gray {\sf f_x(x,y) =  3xy  }}}

\huge {\boxed {\blue {\sf f_{xx} \left ( x,y \right )  = 3y }}}

\huge {\boxed{ \purple {\sf  f_y \left ( x,y \right ) = x^3 - 4y }}}

\huge {\boxed  {\pink {\sf f_{yy} \left ( x,y \right ) =  -4  }}}

\huge {\boxed {\sf \bf f_{xy} \left ( x,y \right ) = 3x }}

\huge {\boxed {\sf \bf f_{yx} \left ( x,y \right ) = 3x }}

  • Att. MatiasHP

Anexos:
Perguntas similares