• Matéria: Matemática
  • Autor: Duda40000
  • Perguntado 4 anos atrás

Qual a representação fracionária do número 0,252525....? *
1 ponto
5/99
25/50
5/25
25/99
252/999

Respostas

respondido por: marmon
2

Resposta:

Explicação passo-a-passo:

25/99

Todo número dividido por 9 gera uma dizima igual a ele próprio

EX 3/9 = 0,33333333...

     7/9 = 0,77777777...

Se o número tiver mais de um algarismo adicione 9s até completar a sequência

EX   32/99 = 0,32323232...

     425/999 = 0,425425425...

Se tiver um número composto multiplique a parte inteira pelo denominador da fração e some ao número da dizima

EX   5,32…..      = (5x99 + 32)/99  =   (495+32)/99 =  527/99

Dizima é a parte que se repete no número 5,1323232…  aqui a dizima é o 32

Para resolvermos este problema precisamos jogar a vírgula para o início da dizima.  

Devemos multiplicar o número por 10, dai fazemos como no caso anterior, mas na hora de dividir multiplicamos o denominador por 10  

EX 5,13232…   x10 = 51,32  = (51x99+32)/99x10  =  (5049 +32) /990   =  5081/990

EX 5,143232… x100 = 514,32  = (514x99+32)/99x100  =  (50886 +32) /9900   =  50918/9900

 em alguns casos dá para simplifica, como no exemplo acima, os dois números são divisíveis por 2 ficando = 25459/4950.


jesicasilva43: alguém pode me ajudar por favor e urgente
marmon: é a 1ª linha voce nem leu!
respondido por: SapphireAmethyst
1

Resposta:

Bonjour étudiant, comment vas-tu? Je suis là pour répondre à vos questions

Para Resolver essa questão devemos contar quais algarismos se repetem, no caso o 25 (ficará no Numerador) no Denominador como são dois números que se repetem infinitamente, então, no Denominador será necessário dois zeros

Explicação passo-a-passo:

\mathbf{0.25255...}  \\  \boxed{ \mathbf{ \frac{25}{99}}} Lembre-se: Simplifique sempre que possível

Relembrando Conceitos:

➦ Dízima Periódica é uma maneira de representar números infinitos em forma de fração.

Perguntas similares