Respostas
respondido por:
3
y = [(1 + log[p] M) . log[pm] C] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] PM)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] P + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/1 + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C)/(1 + log[p]M)] - log[p] C
y = log[p] C - log[p] C
y = 0
-----------------------------
x = log[p] C^(m) - log[m√p] C
x = log[p] C^(m) - (log[p] C/log[p] m√P)
x = log[p] C^(m) - [log[p] C/log[p] P^(1/m)]
x = log[p] C^(m) - [log[p] C/(1/m).log[p] P]
x = log[p] C^(m) - [log[p] C/(1/m)]
x = log[p] C^(m) - [(log[p] C).(m/1)]
x = log[p] C^(m) - m.log[p] C
x = log[p] C^(m) - log[p] C^(m)
x = 0
-----------------------------------
x - y = 0 - 0
x - y = 0
y = [(1 + log[p] M) .( log[p]C/log[p] PM)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/log[p] P + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C/1 + log[p]M)] - log[p] C
y = [(1 + log[p] M) .( log[p]C)/(1 + log[p]M)] - log[p] C
y = log[p] C - log[p] C
y = 0
-----------------------------
x = log[p] C^(m) - log[m√p] C
x = log[p] C^(m) - (log[p] C/log[p] m√P)
x = log[p] C^(m) - [log[p] C/log[p] P^(1/m)]
x = log[p] C^(m) - [log[p] C/(1/m).log[p] P]
x = log[p] C^(m) - [log[p] C/(1/m)]
x = log[p] C^(m) - [(log[p] C).(m/1)]
x = log[p] C^(m) - m.log[p] C
x = log[p] C^(m) - log[p] C^(m)
x = 0
-----------------------------------
x - y = 0 - 0
x - y = 0
Perguntas similares
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás