• Matéria: Matemática
  • Autor: gustavofiosenjunior5
  • Perguntado 4 anos atrás

ajuda ai ;( ................................................

Anexos:

almeidajoaomarcos12: pode marcar minha resposta como a melhor? Obrigado,bons estudos! :3

Respostas

respondido por: Braum53
1

Resposta:

a)x-4=3

x=3+4

x=7

b)Y+28=13

Y=12-28

Y=(-17)

c)x+7=7

x=7-7

x=0

d)y-39=70

y=70+39

y=109

2)

a)4x=20

x=20÷4

x=5

b)9x=9

x=9÷9

x=1

c)7y=21

y=21÷7

y=3

d)3x=18

x=18÷3

x=6

respondido por: almeidajoaomarcos12
1

Resposta:

1-

a)7

b)-17

c)14

d)109

2-

a)5

b)1

c)3

d)6

Explicação passo-a-passo:

>agora vamos a explicação<

Equação é uma expressão algébrica que contém uma igualdade. Ela foi criada para ajudar as pessoas a encontrarem soluções para problemas nos quais um número não é conhecido. Sabendo que a soma de dois números consecutivos é igual a 11, por exemplo, é possível encontrar esses dois números por meio de equações.

Antes de aprender a resolver equações, é preciso compreender o significado da definição dada acima.

Expressões algébricas

Expressões algébricas são um conjunto de operações matemáticas básicas aplicadas a números conhecidos e a números desconhecidos. Para representar esses números desconhecidos, são utilizadas letras. É mais comum utilizar as letras x e y, mas isso não significa que elas são as únicas. Em alguns casos, são utilizadas letras do alfabeto grego e até símbolos diversos.

Observe os exemplos de expressões algébricas abaixo:

1) 12x2 + 16y + 4ab

2) x + y

3) 4 + 7a

Todas essas expressões possuem letras representando números e números sendo somados e multiplicados.

Igualdade

Toda expressão algébrica que possuir uma igualdade em sua composição será chamada de equação. Observe alguns exemplos:

1) x + 2 = 7

2) 12x2 + 16y + 4ab = 7

3) 1:x = 3

A igualdade é o que permite encontrar os resultados de uma equação. É a igualdade que relaciona uma operação matemática aplicada em alguns números com o seu resultado. Portanto, a igualdade é peça fundamental ao procurar os resultados de uma equação.

Por exemplo: Dada a equação x – 14 = 8, qual é o valor de x?

Ora, sabemos que x é um número que, subtraído por 14, tem 8 como resultado. Observe que é possível pensar em um resultado “de cabeça” ou pensar em uma estratégia para resolver essa equação. A estratégia pode ser obtida da seguinte maneira: Se x é um número que, subtraído de 14, resulta em 8, então, para encontrar x, basta somar 14 com 8. Desse modo, podemos escrever a seguinte linha de raciocínio:

x – 14 = 8

x = 8 + 14

x = 22

Somando 14 e 8, teremos 22 como resultado.

Grau de uma equação

O grau de uma equação está relacionado com a quantidade de incógnitas que ela possui. Dizemos que uma equação é de grau 1 quando o maior expoente das suas incógnitas é 1. Uma equação possui grau 2 quando o maior expoente das suas incógnitas é 2 e assim por diante. O grau também pode ser dado pelo produto de incógnitas diferentes. Por exemplo: a equação xy + 2 = y é uma equação de grau 2 porque possui um produto entre duas incógnitas de expoente 1.

O grau de uma equação determina quantas soluções a equação possui. Desse modo, uma equação de grau 1 possui apenas 1 resultado (um valor possível para a incógnita); uma equação de grau 2 possui dois resultados e assim sucessivamente.

Solução de equações

Uma das estratégias de resolução de uma equação faz uso do pensamento acima. Repare que, observando as duas equações (x – 14 = 8 e x = 8 + 14), é possível imaginar que o número 14 trocou de lado da igualdade com um efeito colateral: trocou o seu sinal de negativo para positivo. Essa é uma das regras para solução de equações que estão listadas a seguir:

Regra 1 – Do lado direito da igualdade, só permanecem números que não possuem incógnita; do lado esquerdo, apenas números que possuem;

Regra 2 – Para trocar números de lado, possuindo ou não incógnita, é necessário trocar o sinal deles;

Regra 3 – Feitos os passos 1 e 2, realize os cálculos que forem possíveis. Lembre-se de que os números que possuem incógnita podem ser somados se a incógnita for a mesma. Para isso, some apenas o número que as acompanha.

Regra 4 – Ao final, deve-se isolar a incógnita. Para isso, o número que a acompanha deverá ser passado para o lado direito da equação dividindo os seus componentes.

Regra 5 – Se for necessário trocar de lado um número que está no denominador de uma fração, ele deverá passar para o outro lado multiplicando.

Exemplos

1) Qual o valor de x na equação 4x + 4 = 2x – 8?

Solução: Seguindo a primeira e segunda regras, obteremos a seguinte linha de raciocínio:

4x + 4 = 2x – 8

4x – 2x = – 8 – 4

Agora, realize a terceira regra para obter:

2x = – 12

Por fim, realize a regra 4:

2x = – 12

x = –12

     2

x = – 6

Portanto, o valor de x é – 6.

2) Sabendo que a soma de dois números consecutivos é igual a 11, quais são esses dois números?

Solução: Observe que os números são desconhecidos, mas são consecutivos. Ser consecutivo significa que o segundo é uma unidade maior que o primeiro. Por exemplo, 1 e 2 são consecutivos porque 2 é uma unidade maior que 1. Se os números consecutivos são desconhecidos, representaremos eles por uma letra (no caso x) e somaremos 1 ao primeiro para obter o segundo. Além disso, sabendo que a soma entre os dois tem 11 como resultado, podemos escrever:

x + (x + 1) = 11

x + x + 1 = 11

Pelas regras 1 e 2, obtenha:

x + x = 11 – 1

Pela regra 3, observe o resultado:

2x = 10

Utilizando a regra 4, obtenha:

2x = 10

x = 10

     2

x = 5


gustavofiosenjunior5: muito obrigado me ajudou demais
almeidajoaomarcos12: de nada se precisa de mais algo chame
Perguntas similares