progressão aritimetica
a) Seis termos, em ue o 1 termo e a1=-2 e a razão e r=-4
b) Tres termos em ue a1=9 e a razão e r=7
c) uatro termos em ue a1=30 e r=-15
Respostas
respondido por:
1
Basta somar a razão com o termo anterior
a2=a1+r
a3=a2+r ...
Ou então usar a formula an=a1+(n-1)r
a) 2,6,10,14,18,22
b)9,16,23
c)30,45,60,75
a2=a1+r
a3=a2+r ...
Ou então usar a formula an=a1+(n-1)r
a) 2,6,10,14,18,22
b)9,16,23
c)30,45,60,75
Helvio:
Em c) r = -15
respondido por:
1
A)
n an = a1 + ( n -1) . r = an
1 an = -2 + ( 1 -1) .-4 = -2
2 an = -2 + ( 2 -1) .-4 = -6
3 an = -2 + ( 3 -1) .-4 = -10
4 an = -2 + ( 4 -1) .-4 = -14
5 an = -2 + ( 5 -1) .-4 = -18
6 an = -2 + ( 6 -1) .-4 = -22
PA = (-2, -6, -1, -14, -18, -22)
===
B)
a1 = 9
r = 7
n an = a1 + ( n -1) . r = an
1 an = 9 + ( 1 -1) .7 = 9
2 an = 9 + ( 2 -1) .7 = 16
3 an = 9 + ( 3 -1) .7 = 23
PA = (9, 16, 23)
===
C)
n an = a1 + ( n -1) . r = an
1 an = 30 + ( 1 -1) .-15 = 30
2 an = 30 + ( 2 -1) .-15 = 15
3 an = 30 + ( 3 -1) .-15 = 0
4 an = 30 + ( 4 -1) .-15 = -15
PA = (30, 15, 0, -15)
n an = a1 + ( n -1) . r = an
1 an = -2 + ( 1 -1) .-4 = -2
2 an = -2 + ( 2 -1) .-4 = -6
3 an = -2 + ( 3 -1) .-4 = -10
4 an = -2 + ( 4 -1) .-4 = -14
5 an = -2 + ( 5 -1) .-4 = -18
6 an = -2 + ( 6 -1) .-4 = -22
PA = (-2, -6, -1, -14, -18, -22)
===
B)
a1 = 9
r = 7
n an = a1 + ( n -1) . r = an
1 an = 9 + ( 1 -1) .7 = 9
2 an = 9 + ( 2 -1) .7 = 16
3 an = 9 + ( 3 -1) .7 = 23
PA = (9, 16, 23)
===
C)
n an = a1 + ( n -1) . r = an
1 an = 30 + ( 1 -1) .-15 = 30
2 an = 30 + ( 2 -1) .-15 = 15
3 an = 30 + ( 3 -1) .-15 = 0
4 an = 30 + ( 4 -1) .-15 = -15
PA = (30, 15, 0, -15)
Perguntas similares
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás