• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 4 anos atrás

Qual é o valor de y = log4 (log3 9) + log3 (log 1000) ?​


mahmtr: Forma Exata:
y=log(4)log(27)+log(27)
Na forma de dízima:
y=2.29313061…

Respostas

respondido por: lararezendeprado
0

Resposta:

3/2

log3 9= log3 3^2= 2

log 1000= log 10^3= 3

Espero ter ajudado!!

respondido por: CyberKirito
0

\large\boxed{\begin{array}{l}\sf y=\ell og_4(\ell og_39)+\ell og_3(\ell og 1000)\\\sf y=\ell og_4(\ell og_33^2)+\ell og_3(\ell og 10^3)\\\sf y=\ell og_4(2\ell og_33)+\ell og_3(3\ell og10)\\\sf y=\ell og_42+\ell og_33\\\sf y=\ell og_{2^2}2^1+1\\\sf y=\dfrac{1}{2}+1\\\\\sf y=\dfrac{1+2}{2}\\\\\sf y=\dfrac{3}{2}\end{array}}

Perguntas similares