Existem dois números naturais consecutivos tais que as somas de seus algarismos são ambas divisíveis por 7? Se sim, qual é o menor desses números?
Respostas
respondido por:
8
Raciocinando com números consecutivos e múltiplos de 7, obtemos que não existem 2 números consecutivos de forma que a soma de seus números seja divisível por 7. A seguir, explicaremos como obtemos isso:
- O problema que eles nos dão é raciocinar de forma simples. Os números consecutivos vão um após o outro, por exemplo 13, 14, 15, 16, etc. Se percebermos, a soma de seus algarismos também será consecutiva. A soma dos algarismos de os números no exemplo que demos seria 4, 5, 6, 7, respectivamente
- Isso indica que a soma dos algarismos será sempre consecutiva em números consecutivos de 2 algarismos que estão no intervalo de 10 - 19; 20-29; 30-39; ...; 90 - 99. As mudanças de intervalo ocorrem quando a dezena muda, aqui a soma dos números começa novamente.
- Para um número ser divisível por 7, deve ser um múltiplo de 7. À medida que obtemos números consecutivos, não existem esses 2 números que eles nos pedem, pois devem ser múltiplos consecutivos de 7 para que sejam divisíveis por 7 e não números consecutivos simples
=================================================================
Resolva tarefas semelhantes:
https://brainly.com.br/tarefa/2012141
https://brainly.com.br/tarefa/70211
Espero ter ajudado, boa sorte!
Anexos:
silvacrus922:
nossa, mto bom o raciocinio
Perguntas similares
4 anos atrás
4 anos atrás
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás