3-Das equaçoes da questão anterior resolva as que tem solucao usando a formula resolutiva de Baskhara.
a)x^2 -2x+1=0
b)3x^2 -2x-1=0
c)x^2 +3x-10=0
d)x^2 -6x+9=0
Obs:As q tem solucao da questao anterior
Respostas
a) x^2 - 2x + 1 = 0
a = 1
b = -2
c = 1
Δ = b^2 - 4 . a . c
Δ = (-2)^2 - 4 . 1 . 1
Δ = 4 - 4
Δ = 0
x = -b ± √Δ /2 . a
x = -(-2) ± √0 /2 . 1
x = 2 ± 0 /2
x' = 2 + 0 /2
x' = 2/2
x' = 1
x" = 2 - 0 /2
x" = 2/2
x" = 1
S = {1 , 1}
b) 3x^2 - 2x - 1 = 0
a = 3
b = -2
c = -1
Δ = b^2 - 4 . a . c
Δ = (-2)^2 - 4 . 3 . (-1)
Δ = 4 - (-12)
Δ = 4 + 12
Δ = 16
x = -b ± √Δ /2 . a
x = -(-2) ± √16 /2 . 3
x = 2 ± 4 /6
x' = 2 + 4 /6
x' = 6/6
x' = 1
x" = 2 - 4 /6
x" = -2/6
x" = -1/3
S = {1 , -1/3}
c) x^2 + 3x - 10 = 0
a = 1
b = 3
c = -10
Δ = b^2 - 4 . a . c
Δ = 3^2 - 4 . 1 . (-10)
Δ = 9 - (-40)
Δ = 9 + 40
Δ = 49
x = -b ± √Δ /2 . a
x = -3 ± √49 /2 . 1
x = -3 ± 7 /2
x' = -3 + 7 /2
x' = 4/2
x' = 2
x" = -3 - 7 /2
x" = -10/2
x" = -5
S = {2 , -5}
d) x^2 - 6x + 9 = 0
a = 1
b = -6
c = 9
Δ = b^2 - 4 . a . c
Δ = (-6)^2 - 4 . 1 . 9
Δ = 36 - 4 . 9
Δ = 36 - 36
Δ = 0
x = -b ± √Δ /2 . a
x = -(-6) ± √0 /2 . 1
x = 6 ± 0 /2
x' = 6 + 0 /2
x' = 6/2
x' = 3
x" = 6 - 0 /2
x" = 6/2
x" = 3
S = {3 , 3}