CALCULO 2
A área da superfície de revolução resultante da rotação de ...
Anexos:
![](https://pt-static.z-dn.net/files/d59/4de58cae280d098bdde4c67efac773b7.png)
Lukyo:
Tem como editar?
Respostas
respondido por:
1
A área da superfície de revolução do gráfico de
em torno do eixo
no intervalo
é dada por
![\boxed{\begin{array}{c} A=\displaystyle\int\limits_{a}^{b}{2\pi\,f(x)\sqrt{1+[f'(x)]^{2}}\,dx} \end{array}}\;\;\;\;\;\;\mathbf{(i)} \boxed{\begin{array}{c} A=\displaystyle\int\limits_{a}^{b}{2\pi\,f(x)\sqrt{1+[f'(x)]^{2}}\,dx} \end{array}}\;\;\;\;\;\;\mathbf{(i)}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+A%3D%5Cdisplaystyle%5Cint%5Climits_%7Ba%7D%5E%7Bb%7D%7B2%5Cpi%5C%2Cf%28x%29%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E%7B2%7D%7D%5C%2Cdx%7D+%5Cend%7Barray%7D%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Cmathbf%7B%28i%29%7D)
Para esta questão, temos
![f(x)=\sqrt{x}\;\;\Rightarrow\;\;f'(x)=\dfrac{1}{2\sqrt{x}}\;\;\Rightarrow\;\;1+[f'(x)]^{2}=1+\dfrac{1}{4x} f(x)=\sqrt{x}\;\;\Rightarrow\;\;f'(x)=\dfrac{1}{2\sqrt{x}}\;\;\Rightarrow\;\;1+[f'(x)]^{2}=1+\dfrac{1}{4x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%7Bx%7D%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3Bf%27%28x%29%3D%5Cdfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3B1%2B%5Bf%27%28x%29%5D%5E%7B2%7D%3D1%2B%5Cdfrac%7B1%7D%7B4x%7D)
O intervalo a ser considerado é o intervalo![[1,\;4]. [1,\;4].](https://tex.z-dn.net/?f=%5B1%2C%5C%3B4%5D.)
Sendo assim, a área é dada por
![A=\displaystyle\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{1+\dfrac{1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{\dfrac{4x}{4x}+\dfrac{1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{\dfrac{4x+1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \dfrac{\sqrt{4x+1}}{\sqrt{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{\diagup\!\!\!\!2\pi\,\sqrt{\diagup\!\!\!\! x}\cdot \dfrac{\sqrt{4x+1}}{\diagup\!\!\!\!2\sqrt{\diagup\!\!\!\! x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{\pi\,\sqrt{4x+1}\,dx}\;\;\;\;\;\;\mathbf{(ii)} A=\displaystyle\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{1+\dfrac{1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{\dfrac{4x}{4x}+\dfrac{1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \sqrt{\dfrac{4x+1}{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{2\pi\,\sqrt{x}\cdot \dfrac{\sqrt{4x+1}}{\sqrt{4x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{\diagup\!\!\!\!2\pi\,\sqrt{\diagup\!\!\!\! x}\cdot \dfrac{\sqrt{4x+1}}{\diagup\!\!\!\!2\sqrt{\diagup\!\!\!\! x}}\,dx}\\ \\ \\ A=\int\limits_{1}^{4}{\pi\,\sqrt{4x+1}\,dx}\;\;\;\;\;\;\mathbf{(ii)}](https://tex.z-dn.net/?f=A%3D%5Cdisplaystyle%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B2%5Cpi%5C%2C%5Csqrt%7Bx%7D%5Ccdot+%5Csqrt%7B1%2B%5Cdfrac%7B1%7D%7B4x%7D%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B2%5Cpi%5C%2C%5Csqrt%7Bx%7D%5Ccdot+%5Csqrt%7B%5Cdfrac%7B4x%7D%7B4x%7D%2B%5Cdfrac%7B1%7D%7B4x%7D%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B2%5Cpi%5C%2C%5Csqrt%7Bx%7D%5Ccdot+%5Csqrt%7B%5Cdfrac%7B4x%2B1%7D%7B4x%7D%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B2%5Cpi%5C%2C%5Csqrt%7Bx%7D%5Ccdot+%5Cdfrac%7B%5Csqrt%7B4x%2B1%7D%7D%7B%5Csqrt%7B4x%7D%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%5Cpi%5C%2C%5Csqrt%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%7D%5Ccdot+%5Cdfrac%7B%5Csqrt%7B4x%2B1%7D%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%5Csqrt%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+x%7D%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint%5Climits_%7B1%7D%5E%7B4%7D%7B%5Cpi%5C%2C%5Csqrt%7B4x%2B1%7D%5C%2Cdx%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5Cmathbf%7B%28ii%29%7D)
Fazendo a seguinte mudança de variável:
![4x+1=u\;\;\Rightarrow\;\;4x\,dx=du\;\;\Rightarrow\;\;dx=\dfrac{1}{4}\,du 4x+1=u\;\;\Rightarrow\;\;4x\,dx=du\;\;\Rightarrow\;\;dx=\dfrac{1}{4}\,du](https://tex.z-dn.net/?f=4x%2B1%3Du%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3B4x%5C%2Cdx%3Ddu%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3Bdx%3D%5Cdfrac%7B1%7D%7B4%7D%5C%2Cdu)
Mudando os limites de integração:
![\text{Quando }x=1\;\;\Rightarrow\;\;u=5\\ \\ \text{Quando }x=4\;\;\Rightarrow\;\;u=17 \text{Quando }x=1\;\;\Rightarrow\;\;u=5\\ \\ \text{Quando }x=4\;\;\Rightarrow\;\;u=17](https://tex.z-dn.net/?f=%5Ctext%7BQuando+%7Dx%3D1%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3Bu%3D5%5C%5C+%5C%5C+%5Ctext%7BQuando+%7Dx%3D4%5C%3B%5C%3B%5CRightarrow%5C%3B%5C%3Bu%3D17)
Substituindo em
a integral fica
![A=\displaystyle\int\limits_{5}^{17}{\pi\sqrt{u}}\cdot \dfrac{1}{4}\,du\\ \\ \\ A=\dfrac{\pi}{4}\int\limits_{5}^{17}{\sqrt{u}\,du}\\ \\ \\ A=\dfrac{\pi}{4}\cdot \left.\left(\dfrac{2}{3}\,u^{3/2} \right )\right|_{5}^{17}\\ \\ \\ A=\dfrac{\pi}{4}\cdot \dfrac{2}{3}\cdot \left(17^{3/2}-5^{3/2} \right )\\ \\ \\ A=\dfrac{\pi}{6}\cdot \left(\sqrt{17^{3}}-\sqrt{5^{3}} \right )\\ \\ \\ A=\dfrac{\pi}{6}\cdot \left(\sqrt{17^{2}\cdot 17}-\sqrt{5^{2}\cdot 5} \right )\\ \\ \\ \boxed{\begin{array}{c}A=\dfrac{\pi}{6}\cdot \left(17\sqrt{17}-5\sqrt{5} \right )~\mathrm{u.a.} \end{array}} A=\displaystyle\int\limits_{5}^{17}{\pi\sqrt{u}}\cdot \dfrac{1}{4}\,du\\ \\ \\ A=\dfrac{\pi}{4}\int\limits_{5}^{17}{\sqrt{u}\,du}\\ \\ \\ A=\dfrac{\pi}{4}\cdot \left.\left(\dfrac{2}{3}\,u^{3/2} \right )\right|_{5}^{17}\\ \\ \\ A=\dfrac{\pi}{4}\cdot \dfrac{2}{3}\cdot \left(17^{3/2}-5^{3/2} \right )\\ \\ \\ A=\dfrac{\pi}{6}\cdot \left(\sqrt{17^{3}}-\sqrt{5^{3}} \right )\\ \\ \\ A=\dfrac{\pi}{6}\cdot \left(\sqrt{17^{2}\cdot 17}-\sqrt{5^{2}\cdot 5} \right )\\ \\ \\ \boxed{\begin{array}{c}A=\dfrac{\pi}{6}\cdot \left(17\sqrt{17}-5\sqrt{5} \right )~\mathrm{u.a.} \end{array}}](https://tex.z-dn.net/?f=A%3D%5Cdisplaystyle%5Cint%5Climits_%7B5%7D%5E%7B17%7D%7B%5Cpi%5Csqrt%7Bu%7D%7D%5Ccdot+%5Cdfrac%7B1%7D%7B4%7D%5C%2Cdu%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Cint%5Climits_%7B5%7D%5E%7B17%7D%7B%5Csqrt%7Bu%7D%5C%2Cdu%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Ccdot+%5Cleft.%5Cleft%28%5Cdfrac%7B2%7D%7B3%7D%5C%2Cu%5E%7B3%2F2%7D+%5Cright+%29%5Cright%7C_%7B5%7D%5E%7B17%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Ccdot+%5Cdfrac%7B2%7D%7B3%7D%5Ccdot+%5Cleft%2817%5E%7B3%2F2%7D-5%5E%7B3%2F2%7D+%5Cright+%29%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Ccdot+%5Cleft%28%5Csqrt%7B17%5E%7B3%7D%7D-%5Csqrt%7B5%5E%7B3%7D%7D+%5Cright+%29%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Ccdot+%5Cleft%28%5Csqrt%7B17%5E%7B2%7D%5Ccdot+17%7D-%5Csqrt%7B5%5E%7B2%7D%5Ccdot+5%7D+%5Cright+%29%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7DA%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Ccdot+%5Cleft%2817%5Csqrt%7B17%7D-5%5Csqrt%7B5%7D+%5Cright+%29%7E%5Cmathrm%7Bu.a.%7D+%5Cend%7Barray%7D%7D)
Resposta: alternativa![\text{a.~~~}\pi\!\left[\dfrac{17\sqrt{17}-5\sqrt{5}}{6} \right ]~\mathrm{u.a.} \text{a.~~~}\pi\!\left[\dfrac{17\sqrt{17}-5\sqrt{5}}{6} \right ]~\mathrm{u.a.}](https://tex.z-dn.net/?f=%5Ctext%7Ba.%7E%7E%7E%7D%5Cpi%5C%21%5Cleft%5B%5Cdfrac%7B17%5Csqrt%7B17%7D-5%5Csqrt%7B5%7D%7D%7B6%7D+%5Cright+%5D%7E%5Cmathrm%7Bu.a.%7D)
O intervalo a ser considerado é o intervalo
Sendo assim, a área é dada por
Fazendo a seguinte mudança de variável:
Mudando os limites de integração:
Substituindo em
Resposta: alternativa
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás