• Matéria: Matemática
  • Autor: kauapeixoto2012
  • Perguntado 3 anos atrás

11 - A localização de uma cidade A apresenta coordenadas (132, 20) enquanto que uma cidade B apresenta localização nas coordenadas (51, 128). Considerando que as duas cidades pertencem a um mesmo plano cartesiano, calcule a distância entre A e B. *​

Respostas

respondido por: evilynvivyan
0

Resposta:

dAB = 135

Explicação passo a passo:

Para calcular a distância de um ponto para o outro, basta utilizar a fórmula:

dAB= \sqrt{(Xb-Xa)^{2}  + (Yb-Ya)^{2} }

Agora, é só substituir os valores que nos foram dados na questão:

A( 132, 20)\\B( 51 ,128)\\\\dAB= \sqrt{(51-132)^{2} +(128-20)^{2} } \\dAB=\sqrt{(-81)^{2} +(108)^{2} } \\dAB=\sqrt{6561+11664} \\dAB=\sqrt{18225} \\dAB= 135

Sendo assim, a distância entre A e B é 135.

Perguntas similares