• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 3 anos atrás

Encontre a derivada das seguintes funções:

Anexos:

Skoy: Oba! :)
Skoy: Amanhã eu respondo.

Respostas

respondido por: marcelo7197
3

Explicação passo-a-passo:

Cálculo diferencial

Dada a função:

\sf{ f(x)~=~\dfrac{1}{\sqrt{2x-1}} } \\

Vamos reescrever a função:

\iff \sf{ y~=~ \left(\dfrac{1}{2x-1}\right)^{\frac{1}{2}} } \\

Vamos aplicar logaritmos em ambos os membros da nossa igualdade e nos apoderar d'algumas propriedades dos mesmos .

\iff\sf{ \ln(y)~=~\dfrac{1}{2}\ln\left[\dfrac{1}{2x-1}\right] } \\

\iff\sf{ \ln(y)~=~\dfrac{1}{2}\ln(1)-\dfrac{1}{2}\ln\left(2x - 1\right) } \\

Olha que \sf{\left[\ln(u)\right]~=~\dfrac{u'}{u}} \\ , vamos derivar em ambos os membros da nossa igualdade :

\iff\sf{ \dfrac{y'}{y}~=~0-\dfrac{1}{2}\dfrac{(2x-1)'}{2x-1}~=~-\dfrac{1}{2x-1} } \\

\iff\sf{ y'~=~-y*\dfrac{1}{2x-1} } \\

\iff\sf{ y'~=~-\dfrac{1}{\left(2x-1\right)\sqrt{2x-1}} } \\

\iff \boxed{\boxed{ \green{\sf{ y'~=~-\dfrac{1}{\left(2x-1\right)\sqrt{2x-1}} } } } } \\

=================================================================

Vamos cá também fazer a mesma ginástica.

\sf{f(x)~=~\sqrt[3]{x+3} } \\

\iff \sf{ y~=~\left( x+3\right)^{\frac{1}{3}} } \\

\iff \sf{ \ln(y)~=~\dfrac{1}{3}\ln(x+3) } \\

\iff \sf{ \dfrac{y'}{y}~=~ \dfrac{1}{3}*\dfrac{(x+3)'}{x+3} } \\

\iff \sf{ y'~=~y\dfrac{1}{3(x+3)} } \\

\iff\boxed{\boxed{\green{\sf{ f'(x)~=~\dfrac{\sqrt[3]{x+3}}{3(x+3)} } } } } \\

This answer was elaborad by:

Murrima , Joaquim Marcelo

UEM(MOÇAMBIQUE)-DMI

Anexos:

Anônimo: GOD D+ vlw mano
respondido por: Skoy
2
  • Calculando as derivadas, temos:

\large\displaystyle\text{$\begin{gathered}  f'(x)=\frac{1}{3\sqrt[3]{\left( x+3\right)^{2}}} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'(x)=-\frac{1}{\sqrt{(2x-1)^3}}   \end{gathered}$}

Desejamos calcular a derivada das seguintes funções:

\large\displaystyle\text{$\begin{gathered} f(x)=\frac{1}{\sqrt{2x-1}  }  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f(x)=\sqrt[3]{x+3} \end{gathered}$}

Para calcular derivadas, temos algumas propriedades de derivação. Sendo elas:

\large\displaystyle\text{$\begin{gathered} \left( f\cdot g \right)' = f'\cdot g+f\cdot g'\ \ \ \ \ \bf (I)\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} \left( \frac{f}{g}  \right)' = \frac{f'\cdot g-f\cdot g'}{g^2}\ \ \ \ \ \bf (II)\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f\left( g \left( x \right) \right) '= f'(g(x))\cdot g'(x)\ \ \ \ \ \bf (III)\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f(x)=a\cdot x^n\rightarrow a\cdot n\cdot x^{n-1}\ \ \ \ \ \bf (IV)\end{gathered}$}

Calculando então a derivada da primeira função:

     \large\displaystyle\text{$\begin{gathered} f'(x)=\left(2x-1 \right)^{ -\frac{1}{2}} \Rightarrow -\frac{1}{2}\left( 2x-1\right)^{-\frac{1}{2} - 1}\cdot (2x-1)' \end{gathered}$} \large\displaystyle\text{$\begin{gathered} f'(x)= -\frac{1}{2}\left( 2x-1\right)^{-\frac{1}{2} - 1}\cdot (2x-1)'\Rightarrow f'(x)=-\frac{(2x-1)^{-\frac{3}{2}}}{\not{2}}\cdot \not{2 }\end{gathered}$}

      \large\displaystyle\text{$\begin{gathered}  f'(x)=-(2x-1)^{-\frac{3}{2}}\Rightarrow f'(x)=-\frac{1}{(2x-1)^{\frac{3}{2}}} \end{gathered}$}

     \large\displaystyle\text{$\begin{gathered}  f'(x)=-(2x-1)^{-\frac{3}{2}}\Rightarrow f'(x)=-\frac{1}{\sqrt{ (2x-1)^3}} \end{gathered}$}

  \large\displaystyle\text{$\begin{gathered} \therefore f(x)=\frac{1}{\sqrt{2x-1}  }\Rightarrow \boxed{\boxed{\green{f'(x)=-\frac{1}{\sqrt{(2x-1)^3}}}}}\ \checkmark   \end{gathered}$}

Calculando agora a derivada da segunda função:

       \large\displaystyle\text{$\begin{gathered} f'(x)=\left(x+3\right)^{ \frac{1}{3}} \Rightarrow \frac{1}{3}\left( x+3\right)^{\frac{1}{3}-1} \cdot (x+3)'\end{gathered}$}

 \large\displaystyle\text{$\begin{gathered} f'(x)= \frac{1}{3}\left( x+3\right)^{\frac{1}{3}-1} \cdot (x+3)'\Rightarrow f'(x)=\frac{1}{3}\left( x+3\right)^{-\frac{2}{3}} \end{gathered}$}

     \large\displaystyle\text{$\begin{gathered}  f'(x)=\frac{\left( x+3\right)^{-\frac{2}{3}}}{3} \Rightarrow  f'(x)=\frac{1}{3\left( x+3\right)^{\frac{2}{3}}} \end{gathered}$}   \large\displaystyle\text{$\begin{gathered} \therefore f(x)=\sqrt[3]{x+3}  \Rightarrow  \boxed{\boxed{\green{f'(x)=\frac{1}{3\sqrt[3]{\left( x+3\right)^{2}} }}}}\ \checkmark\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/47020686
  • brainly.com.br/tarefa/48399708
Anexos:
Perguntas similares