Respostas
1.Na matemática, uma equação é uma igualdade envolvendo uma ou mais incógnitas. São exemplos de equações as seguintes igualdades: 3sen+25cos=18 3x^{4}-x^{3}+5x^{2}-34x+1211=0 tg+sen^{3}=255 Nesses exemplos, as letras x e y são as incógnitas das equações.
2.O grau de uma equação está relacionado com a quantidade de incógnitas que ela possui. Dizemos que uma equação é de grau 1 quando o maior expoente das suas incógnitas é 1. Uma equação possui grau 2 quando o maior expoente das suas incógnitas é 2 e assim por diante.
3.Um número é raiz de uma equação quando colocado no lugar da incógnita, a equação se transforma numa sentença verdadeira. Resolver uma equação significa encontrar suas raízes (ou soluções). Um número é raiz de uma equação quando colocado no lugar da incógnita, a equação se transforma numa sentença verdadeira.
4.As equações do primeiro grau possuem uma única raiz: Existe um valor de que deve satisfazer esta igualdade, logo ele é a única raiz desta equação.
5.Exemplo 1:
2 = x – 1
x x + 2
Não pare agora... Tem mais depois da publicidade ;)
Nesse caso, os denominadores devem ser diferentes de zero, portanto, podemos dizer que:
x ≠ 0 e x ≠ -2
Para resolver a equação fracionária, vamos encontrar o mínimo múltiplo comum entre os dois denominadores. Feito isso, vamos dividi-lo por cada denominador e multiplicá-lo pelo seu respectivo denominador:
2(x + 2) = x(x – 1)
x(x + 2) x(x +2)
Como ambos os denominadores são iguais, podemos desconsiderá-los, ficando apenas com:
2(x + 2) = x(x – 1)
Aplicando a propriedade distributiva, temos:
2x + 4 = x2 – x
Colocando os termos em ordem de um mesmo lado da equação, teremos montada uma equação de segundo grau:
x2 – 3x – 4 = 0
Essa equação possui coeficientes a = 1, b = – 3 e c = – 4. Vamos resolver a equação através da fórmula de Bhaskara:
x = –b ± √[b² – 4ac]
2a
x = –(–3) ± √[(–3)² – 4.1.(–4)]
2.1
x = +3 ± √[9 + 16]
2
x = 3 ± √25
2
x = 3 ± 5
2
x' = 3 + 5 = 8 = 4
2 2
x'' = 3 – 5 = – 2 = –1
2 2
Portanto, os resultados possíveis são: x = 4 e x = – 1.
Exemplo 2:
3 = 5 + 1
2 x 5
Para essa equação, em razão da presença do x no denominador, temos a restrição de que x ≠ 0.
Para iniciarmos a resolução desse exemplo, devemos encontrar o mínimo múltiplo comum dos denominadores 2, 5 e x, que é 10x. Vamos então dividir esse termo por cada denominador e multiplicá-lo pelo respectivo numerador:
3.5x = 10.5 + 2x.1
10x 10x
Como os denominadores são iguais, podemos desconsiderá-los, ficando apenas com:
3.5x = 10.5 + 2x.1
Resolvendo a equação, temos:
15x = 50 + 2x
15x – 2x = 50
13x = 50
x = 50
13
Portanto, o resultado da equação é 50/13.