• Matéria: Matemática
  • Autor: jessicazinha440
  • Perguntado 3 anos atrás

Calcule distância entre os pontos A (3,-1) e B (3,5) é? * 0 pontos a) 4 b) 6 c) 8 d) 2

Respostas

respondido por: Skoy
7
  • A distância entre os pontos A (3,-1) e B (3,5) é igual a 6. ( B ).

A distância entre os pontos é dada pela seguinte fórmula:

\large\displaystyle\text{$\begin{aligned} D=\sqrt{\left( x_B - x_A \right)^2 + \left( y_B - y_A\right)^2}  \end{aligned}$}

  • Sendo xb ; xa ; yb e ya:

\large\displaystyle\text{$\begin{aligned} A (3,-1) \Rightarrow   \begin{cases} x_A = 3 \\ y_A = -1\end{cases} \end{aligned}$}

\large\displaystyle\text{$\begin{aligned}B (3,5) \Rightarrow   \begin{cases} x_B = 3 \\ y_B = 5\end{cases} \end{aligned}$}

  • Aplicando na fórmula, temos que

\large\displaystyle\text{$\begin{aligned} D=\sqrt{\left( x_B - x_A \right)^2 + \left( y_B - y_A\right)^2}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} D=\sqrt{\left( 3 - 3 \right)^2 + \left( 5 - (-1)\right)^2}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} D=\sqrt{\left( 0 \right)^2 + \left( 5 +1\right)^2}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} D=\sqrt{0  + \left( 6\right)^2}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned} D=\sqrt{ 0 + 36}  \end{aligned}$}

\large\displaystyle\text{$\begin{aligned}\therefore \boxed{\boxed{\green{ D=6}}}\end{aligned}$}

Veja mais sobre:

Distância entre pontos.

\blue{\square} brainly.com.br/tarefa/11540547

Anexos:
respondido por: solkarped
3

✅ Tendo resolvido os cálculos, concluímos que a distância entre os pontos  do plano cartesiano é:

      \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf d(A,B) = 6\:u.\:c.\:\:\:}}\end{gathered}$}

Portanto, a opção correta é:

        \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf Alternativa\:B\:\:\:}}\end{gathered}$}

Sejam os pontos do plano cartesiano:

               \Large\begin{cases} A(3, -1)\\B(3, 5)\end{cases}

Calculando a distância:

    \Large\displaystyle\text{$\begin{gathered} d(A,B) = \sqrt{(X_{B} - X_{A})^{2} + (Y_{B} - Y_{A})^{2}}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \sqrt{(3 - 3)^{2} + (5 - (-1))^{2}}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \sqrt{0^{2} + (5 + 1)^{2}}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \sqrt{0^{2} + 6^{2}}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \sqrt{36}\end{gathered}$}

                     \Large\displaystyle\text{$\begin{gathered} = 6\end{gathered}$}

✅ Portanto, a distância é:

  \Large\displaystyle\text{$\begin{gathered} d(A, B) = 6\:u.\:c.\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/37426863
  2. https://brainly.com.br/tarefa/52183818
  3. https://brainly.com.br/tarefa/52224850
  4. https://brainly.com.br/tarefa/52228457
  5. https://brainly.com.br/tarefa/23838377
  6. https://brainly.com.br/tarefa/52942161
  7. https://brainly.com.br/tarefa/52972925
  8. https://brainly.com.br/tarefa/26405517
  9. https://brainly.com.br/tarefa/49122032
  10. https://brainly.com.br/tarefa/13201425

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares