• Matéria: Matemática
  • Autor: jeamfran15
  • Perguntado 3 anos atrás

complete a tabela
por favor me ajude ​

Anexos:

Respostas

respondido por: MythPi
31

Resposta correta:

 ~~{\because~~\boxed{\begin{gathered}\boxed{\begin{array}{c|c|c|c}{{\sf{Graus}} }\ &{{\sf{Radianos}}}\ &{{\sf{Graus}}}\ &{{\sf{Radianos}}}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad\qquad\quad\qquad\quad\qquad\quad\qquad\quad\qquad\qquad}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\ \\\red{{0}^{  \: \tiny{{\text{o}}}}} & \red{{\displaystyle{\frac{0\pi}{180}\approx \: 0}}} &\red{180^{  \: \tiny{{\text{o} }}}} &\red{{ \displaystyle {\pi }\approx \: 3,14 }}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad \:  \:  \: }}\!\!\!\!\!\ \\\red{30^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{\pi}{6}\approx \: 0{,}52}}} &\red{210^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{7\pi }{6} \approx \: 3{,}66}}}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad \:  \:  \: }}\!\!\!\!\\\red{45^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{\pi}{4}\approx \: 0{,}78}}}&\red{225^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{5\pi }{4}\approx \: 3{,}92 }}}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad \:  \:  \: }}\!\!\!\!\\\red{60^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{\pi}{3}\approx \: 1{,}04}}}&\red{240^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{4\pi }{3}\approx \: 4{,}18 }}}\end{array}~~}\end{gathered}} }

 ~~{\therefore~~\boxed{\begin{gathered}\boxed{\begin{array}{c|c|c|c}\red{90^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{\pi}{2}\approx \: 1{,}57}}}&\red{270^{  \: \tiny{{\text{o}}}}}~~~ &\red{{ \displaystyle {\frac{3\pi }{2}\approx \: 4{,}71 }}}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad}}\!\!\!\!\\\red{120^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{2\pi}{3}\approx \: 2{,}09}}}&\red{300^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{5\pi }{3}\approx \: 5{,}23 }}} \\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad}}\!\!\!\!\\ \red{135^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{3\pi}{4}\approx \: 2{,}35}}}&\red{315^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{7\pi }{4}\approx \: 5{,}49 }}}\\\!\!\!\!\!^{\underline{\qquad\qquad\qquad\quad}}\!\!\!\!\\\red{150^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {\frac{5\pi}{6}\approx \: 2{,}61}}}&\red{360^{  \: \tiny{{\text{o}}}}} &\red{{ \displaystyle {2\pi}\approx 6,28}}\end{array}~~}\end{gathered}}}

   ~

\space\space\space\space\space\huge\mid{\boxed{\bf{\blue{Matem\acute{a}tica}}}\mid}

   ~

Explicação passo a passo

Para converter graus em radianos, temos que multiplicar o ângulo dado (em graus) por~\gray{\frac{\pi}{180^{  \: \tiny{{\text{o}}}}}} .~Para isso, usamos a fórmula geral para converter de graus em radianos. Ou seja:

 \large\underline{ \overline{\boxed{\begin{array}{clr}\\~~~~~~~~ \displaystyle{ \text{Radianos = Graus} \times  \frac{\pi}{\text{180}^{  \: \tiny{{\text{o}}}}} }\\~~~~~~~~~~~  \\ \end{array}}}}

   ~

Vamos resolver um exemplo abaixo:

  •  \Large{ \bf{30^{  \: \tiny{{\text{o}}}}~em~radianos}}

 \large\gray{\space\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned}  \frac{\pi}{6}  \times \frac{\pi}{\pi}  \end{aligned}$}\left\{\begin{array}{ll}\displaystyle{\text{rad} = {30}^{  \: \tiny{{\text{o}}}} \times  \frac{\pi}{\text{180}^{  \: \tiny{{\text{o}}}}} } \\ \\ \displaystyle{30 ^{  \: \tiny{{\text{o}}}}= \frac{\pi}{6} }\\ \\\displaystyle{ \frac{\pi}{6} \times \frac{\pi}{\text{180}^{  \: \tiny{{\text{o}}}}} } \\ \\ \displaystyle{180 ^{  \: \tiny{{\text{o}}}}= \pi }\\ \\~~\displaystyle{= \frac{\pi}{6}  \times \frac{\pi}{\pi} ~~}  \\ \end{array}\right.

 \large\gray{\space\space\space\space\downarrow}\space\space\space\space\displaystyle\text{$\begin{aligned} \frac{\pi}{6}  \: \text{rad}\approx \: 0,52 \: \text{rad}  \end{aligned}$}\left\{\begin{array}{ll}\displaystyle{ \frac{\pi}{6}  \times \frac{\pi}{\pi} } \\ \\ \displaystyle{\frac{\pi}{\pi}= 1 }\\ \\\displaystyle{ \frac{\pi}{ 6}  \times  \not 1 } \\ \\ \displaystyle{\frac{\pi}{6} \approx \: 0,52 }\\ \\~~\displaystyle{= \frac{\pi}{6}  \: \text{rad}\approx \: 0,52 \: \text{rad} } \\ \end{array}\right.

Solução do exemplo:

 ~~{\therefore~~\boxed{\boxed{\begin{array}{lr}\red{~30^{  \: \tiny{{\text{o}}}}=\frac{\pi}{6}  \: \text{rad}\approx \: 0,52 \: \text{rad}~}\end{array}}}}

 

  \:  \:  \: \text{\underline{Att.}}

 {\huge\boxed { {\bf{M}}}\boxed { \red {\bf{y}}} \boxed { \blue {\bf{t}}} \boxed { \gray{\bf{h}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{P}}} \boxed {\bf{i}}}

   ~

 {~~\vdots~~~\large\boxed {\boxed{03:54h}~10.10.21}}

 \bf\large\gray{\underline{\qquad \qquad\qquad \qquad \qquad \qquad \qquad \quad }}

   ~

Veja mais em:

\orange{\square}https://brainly.com.br/tarefa/4826602

\orange{\square}https://brainly.com.br/tarefa/25630454

Anexos:

MythPi: Não ficou bom por causa do limite de letras... Mas obrigado.
MythPi: .... Peters & Wanda haha ^•^
QueenEvan: O limite de letras realmente atrapalha... prefiro ele como Tate Langdon. :v
MythPi: Exato, tive que simplificar ao máximo que pude.

*Prefiro como Mercúrio de Wandavision. *
Anônimo: Estranho que até agora sua resposta não tem verdinho, antes não tinha nem 10 minutos já tinha verdinho :/
Aleske: Uau! Ficou show esse quadro!
SapphireAmethyst: Incrível Myth✨
MythPi: Grato!
Anônimo: ótima resposta MythPi
MythPi: Obrigado.
Perguntas similares