• Matéria: Matemática
  • Autor: yasmim75194
  • Perguntado 3 anos atrás

Resolva a equação 2 sen² x - sen x -1 = 0

Respostas

respondido por: elizeugatao
1

\displaystyle \sf 2 sen^2x-sen\ x-1 = 0 \\\\ \underline{\text{Fa{\c c}amos}} : \\\\ sen\ x = a \\\\ \underline{Da{\'i}}}  : \\\\  2a^2-a -1 = 0 \\\\ a = \frac{-(-1)\pm\sqrt{(-1)^2-4\cdot 2 \cdot (-1)}}{2\cdot 2} \\\\\\ a = \frac{1\pm\sqrt{1+8}}{4} \to a =\frac{1\pm\sqrt{9}}{4} \\\\\\ a = \frac{1\pm3}{4} \\\\ \left\{\begin{array}{I} \displaystyle \sf a=\frac{1+3}{4} \to a = 1 \\\\ \displaystyle \sf a = \frac{1-3}{4} \to  a = \frac{-1}{2}\end{array} \right

Desfazendo a troca de variável :

*

\displaystyle  \\\ \sf a = 1 \\\\ sen\  x = 1\\\\  x = \left(\frac{\pi }{2} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z}

*

\displaystyle  \\\ \sf a = \frac{-1}{2} \\\\ sen\  x = \frac{-1}{2}\\\\  x = \left(\frac{7\pi }{6} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z} \\\\ ou \\\\  x = \left(\frac{11\pi }{6} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z}

Portanto as soluções são :

\displaystyle \boxed{\sf x = \left(\frac{ \pi }{2} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z}}\checkmark  \\\\\\ \boxed{\sf x = \left(\frac{7\pi }{6} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z}}\checkmark   \\\\\\ \boxed{\sf x = \left(\frac{11\pi }{6} +2\cdot k\cdot \pi\right) \ , \ k \in\mathbb{Z} }\checkmark

Perguntas similares