• Matéria: Matemática
  • Autor: Mensageiro777
  • Perguntado 3 anos atrás

A distância do ponto d(AB) é 5. Sendo A(-1,-2), B (3,-y), calcule o valor de y​

Respostas

respondido por: auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{d_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}}

\mathsf{5 = \sqrt{(-1 - 3)^2 + (-2 - (-y))^2}}

\mathsf{25 = (-1 - 3)^2 + (-2 - (-y))^2}

\mathsf{25 = (-1 - 3)^2 + (y - 2)^2}

\mathsf{25 = 16 + (y^2 - 4y + 4)}

\mathsf{y^2 - 4y - 5 + 9 = 0 + 9}

\mathsf{y^2 - 4y + 4 = 9}

\mathsf{(y - 2)^2 = 9}

\mathsf{y' - 2 = 3}

\mathsf{y' = 5}

\mathsf{y'' - 2 = -3}

\mathsf{y'' = -1}

\boxed{\boxed{\mathsf{S = \{5;-1\}}}}


Mensageiro777: Vlw mano
respondido por: FunGirrl39
3

Resposta:

\Large\mathsf{d_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}} \\\Large\mathsf{5 = \sqrt{(-1 - 3)^2 + (-2 - (-y))^2}} \\\Large \mathsf{25 = (-1 - 3)^2 + (-2 - (-y))^2} \\\Large \mathsf{25 = (-1 - 3)^2 + (y - 2)^2} \\ \Large\mathsf{25 = 16 + (y^2 - 4y + 4)} \\ \Large\mathsf{y^2 - 4y - 5 + 9 = 0 + 9} \\\Large\mathsf{y^2 - 4y + 4 = 9} \\\Large \mathsf{(y - 2)^2 = 9} \\ \Large\mathsf{y' - 2 = 3} \\ \Large\mathsf{y' = 5} \\ \Large\mathsf{y'' - 2 = -3} \\ \Large\mathsf{y'' = -1}  \\\Large \red{\mathsf{S = \{5;-1\}}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

Perguntas similares