• Matéria: Matemática
  • Autor: lucasbboysombr
  • Perguntado 9 anos atrás

Quantos números inteiros satisfazem simultaneamente as desigualdades 2x + 3 ≤ x + 7 ≤ 3x + 1 :

Respostas

respondido por: Cleora
56
2x+3≤ x + 7 ⇒ x ≤ 4
x + 7 ≤ 3x + 1 ⇒ x - 3x ≤ 1 -7 ⇒ -2x ≤ -6 ⇒ x ≥ 3.
Fazendo a intersecção, temos resposta: 3 e 4.

lucasbboysombr: Cleora, brigado pela a resposta, só não intendi da onde saiu esse 4 ae?, poderia me dizer! agradeço novamente =D
lucasbboysombr: ohh perdão ja descobri rss, muito obrigado!
respondido por: justforthebois123
0

Resposta:

d) 3.  

Alternativas:

a) 0.  

b) 1.  

c) 2.

d) 3.  

e) infinitos.

Explicação passo-a-passo:

As duas inequações apresentadas podem ser resolvidas como abaixo:

2x+\leq x+7

2x-x\leq 7-3

x\leq 4  

e

x+5\leq 3x+1

x-3x\leq 3x+1

-2x\leq -4

2x\geq 4

x\geq 2  

Portanto, o conjunto que satisfaz ambas as desigualdades é dado por 2\leq x\leq 4, que possui os números inteiros 2, 3 e 4, ou seja, 3 números.

Anexos:
Perguntas similares