• Matéria: Matemática
  • Autor: cartaxom08
  • Perguntado 3 anos atrás

A soma de um número com sua metade é igual a 12. Que número é esse? *

( ) 2
( ) 4
( ) 8
( ) 16

Respostas

respondido por: CyberKirito
2

\large\boxed{\begin{array}{l}\sf A\,soma\,de\,um\,n\acute umero\,com\,sua\,metade\\\sf \acute e\,igual\,a\,12.Que\,n\acute um ero\,\acute e\,esse ?\\\sf()2\\\sf()4\\\sf(\bullet)8\\\rm()16\end{array}}

\large\boxed{\begin{array}{l}\rm n\acute umero\longrightarrow x\\\rm metade\,do\,n\acute umero:\dfrac{x}{2}\\\\\rm equac_{\!\!,}\tilde ao: x+\dfrac{x}{2}=12\\\underline{\sf soluc_{\!\!,}\tilde ao\!:}\\\rm x+\dfrac{x}{2}=12\bullet2\\\\\rm 2x+x=24\\\rm 3x=24\\\rm x=\dfrac{24}{3}\\\\\rm x=8\end{array}}

respondido por: solkarped
2

✅ Após ter montado e resolvido a equação do primeiro grau, concluímos que o valor de "x" é:

       \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf x = 8\:\:\:}}\end{gathered}$}

Montando e resolvendo equação do primeiro grau:

       \Large\displaystyle\text{$\begin{gathered}\tt x + \frac{x}{2} = 12 \end{gathered}$}

     \Large\displaystyle\text{$\begin{gathered}\tt \frac{2x + x}{2} = 12\end{gathered}$}

     \Large\displaystyle\text{$\begin{gathered}\tt 2x + x = 2\cdot12\end{gathered}$}

             \Large\displaystyle\text{$\begin{gathered}\tt 3x = 24\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered}\tt x = \frac{24}{3} \end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered}\tt x = 8\end{gathered}$}

✅ Portanto, o valor de "x" é:

                \Large\displaystyle\text{$\begin{gathered}\tt x = 8\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/40495373
  2. https://brainly.com.br/tarefa/50555691
  3. https://brainly.com.br/tarefa/51064194
  4. https://brainly.com.br/tarefa/51050219
  5. https://brainly.com.br/tarefa/49601211
  6. https://brainly.com.br/tarefa/50222835
  7. https://brainly.com.br/tarefa/49181230
  8. https://brainly.com.br/tarefa/47045119

Anexos:
Perguntas similares