Respostas
Resposta:
1) ∫ 9*tan(x) * log(5*cos(x)) dx
faça u =ln(5cos(x)) ==>du=-tan(x) dx
=9 *∫*tan(x) *u * du/(-tan(x))
= -9 ∫u du
= -9 u²/2 +c
Como u =ln(5cos(x)) , ficamos com:
=-(9/2) * ln²(5cos(x)) + c
2) ∫ √(-x^2+8*x+2) dx
## completando os quadrados
= ∫ √(18-(x-4)²) dx
faça u=x-4 ==>du=dx
= ∫ √(18-u²) du
= ∫ √((3√2)²-u²) du
Substitua sen(s)=u/(2√3) ==>u= sen(s) * (3√2)
du= (3√2) * cos(s) ds
= ∫ √(18-18*sen²(s)) * (3√2) * cos(s) ds
= ∫ √(18cos²(s)) * (3√2) * cos(s) ds
= ∫ (3√2) *cos(s) * (3√2) * cos(s) ds
=18 ∫ cos²(s) ds
#######################
Da tabela
∫ cos²(s) ds = s/2 +(1/4)* sen(2s) + c
########################
sabemos que u=(3√2)*sen(s)
==>sen(s)=u/(3√2)
==> s =arc seno (u/(3√2)
∫ √(-x^2+8*x+2) dx = (arc seno (u/(3√2))/2 +(1/4)* sen(2* arc seno (u/(3√2)) + c
Sabemos que u=(x-4)
∫ √(-x^2+8*x+2) dx
= (arc seno ((x-4)/(3√2))/2 +(1/4)* sen(2* arc seno ((x-4)/(3√2)) + c