Sabendo que os catetos de um triângulo retângulo são (x+5) e (x+1) e a hipotenusa é (x+9), calcule o valor de x.
Respostas
respondido por:
2
Resposta:
x = 11
Explicação passo a passo:
Aplicando o Teorema de Pitágoras:
hipotenusa² = cateto² + cateto²
(x + 9)² = (x + 5)² + (x + 1)²
x² + 2.x.9 + 9² = x² + 2.x.5 + 5² + x² + 2.x.1 + 1²
x² + 18x + 81 = x² + 10x + 25 + x² + 2x + 1
x² - x² + 18x + 81 = 10x + 25 + x² + 2x + 1
0 + 18x + 81 = 10 x + 25 + x² + 2x + 1
18x + 81 = 12 x + 26 + x²
12x + 26 + x² = 18x + 81
x² + 12x - 18x + 26 - 81 = 0
x² - 6x - 55 = 0
Δ = b² - 4.a.c
Δ = (-6)² - 4 . 1 . - 55
Δ = 36 + 220
Δ = 256 ⇒√ 256 ⇒ 16
x = -b + ou - 16/2
x´= -(-6) + 16/2
x´= 6 + 16/2 ⇒22/2 = 11
x´´ = 6 - 16/2 ⇒ -10/2 = -5 desprezar é negativo
x + 5 =
11 + 5 = 16
x + 1 =
11 + 1 = 12
x + 9 =
11 + 9 = 20
Perguntas similares
3 anos atrás
3 anos atrás
3 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás