• Matéria: Matemática
  • Autor: danielvitor169
  • Perguntado 3 anos atrás

Encontre o valor da área A demarcada, entre as curvas.

Anexos:

Respostas

respondido por: solkarped
6

✅ Após resolver os cálculos, concluímos que a área da figura de cor azul entre as referidas curvas é:

                        \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\tt A = 8\,u.\,a.\:\:\:}}\end{gathered}$}

Sejam as funções:

                      \Large\begin{cases}\tt f(x) = -x^{2} + 4x\\\tt g(x) = x^{2}\end{cases}

Analisando o gráfico fornecido percebemos que a área da figura azul corresponde à soma de duas integrais definidas, que são:

\Large\displaystyle\text{$\begin{gathered}\tt 1^{\underline{o}}\end{gathered}$}             \Large\displaystyle\text{$\begin{gathered}\tt A = \int_{a}^{b}g(x)\,dx + \int_{b}^{c}f(x)\,dx\end{gathered}$}

Para calcular esta área devemos calcular os limites de integração. Para isso encontrar os limites de integração do primeiro intervalo:

                           \Large\displaystyle\text{$\begin{gathered}\tt f(x) = g(x)\end{gathered}$}

               \Large\displaystyle\text{$\begin{gathered}\tt -x^{2} + 4x = x^{2}\end{gathered}$}

    \Large\displaystyle\text{$\begin{gathered}\tt -x^{2} - x^{2} + 4x = 0\end{gathered}$}

             \Large\displaystyle\text{$\begin{gathered}\tt -2x^{2} + 4x = 0\end{gathered}$}

                \Large\displaystyle\text{$\begin{gathered}\tt -x^{2} + 2x = 0\end{gathered}$}

Onde as raízes são:

                            \Large\displaystyle\text{$\begin{gathered}\tt x' = 0\end{gathered}$}

           \Large\displaystyle\text{$\begin{gathered}\tt x'' - 2 = 0 \Longrightarrow x'' = 2\end{gathered}$}

Portanto, o primeiro intervalo é:

               \Large\displaystyle\text{$\begin{gathered}\tt I_{1} = \left[x', \,x''\right] = \left[0,\,2\right]\end{gathered}$}

Agora devemos encontrar os limites de integração do segundo intervalo:

                    \Large\displaystyle\text{$\begin{gathered}\tt -x^{2} + 4x = 0\end{gathered}$}

                              \Large\displaystyle\text{$\begin{gathered}\tt x''' = 0\end{gathered}$}

              \Large\displaystyle\text{$\begin{gathered}\tt x'''' - 4 = 0\Longrightarrow x''''= 4\end{gathered}$}

Como os intervalos são complementares, então o segundo intervalo é:

               \Large\displaystyle\text{$\begin{gathered}\tt I_{2} = \left[x'',\,x''''\right] = \left[2, 4\right]\end{gathered}$}

Substituindo os valores na primeira equação temos:

   \Large\displaystyle\text{$\begin{gathered}\tt A = \int_{0}^{2}x^{2}\,dx + \int_{2}^{4}(-x^{2} + 4x)\,dx\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{x^{2 + 1}}{2 + 1}\bigg)\bigg|_{0}^{2} + \bigg(-\frac{x^{2 + 1}}{2 + 1} + \frac{4x^{1 + 1}}{1 + 1}\bigg)\bigg|_{2}^{4}\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{x^{3}}{3}\bigg)\bigg|_{0}^{2} + \bigg(-\frac{x^{3}}{3} + \frac{4x^{2}}{2}\bigg)\bigg|_{2}^{4}\end{gathered}$}

        \large\displaystyle\text{$\begin{gathered}\tt = \left[\frac{2^{3}}{3} - \frac{0^{3}}{3}\right] + \left[\bigg(\frac{-(4^{3})}{3} + \frac{4\cdot4^{2}}{2}\bigg) - \bigg(\frac{-(2^{3})}{3} + \frac{4\cdot2^{2}}{2}\bigg)\right]\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered}\tt = \frac{8}{3} + \left[\bigg(\frac{-64}{3} + \frac{64}{2}\bigg) - \bigg(\frac{-8}{3} + \frac{16}{2}\bigg)\right]\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered}\tt = \frac{8}{3} + \left[\frac{-128 + 192}{6} - \bigg(\frac{-16 + 48}{6}\bigg)\right]\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered}\tt = \frac{8}{3} + \left[\frac{64}{6} - \frac{32}{6}\right]\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered}\tt = \frac{8}{3} + \frac{32}{6}\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered}\tt = \frac{16 + 32}{6}\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered}\tt = \frac{48}{6}\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered}\tt = 8\end{gathered}$}

Portanto, a área é:

   \Large\displaystyle\text{$\begin{gathered}\tt A = 8\,u.\,a.\end{gathered}$}

       

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/51837328
  2. https://brainly.com.br/tarefa/25265066
  3. https://brainly.com.br/tarefa/52068651
  4. https://brainly.com.br/tarefa/24160100
  5. https://brainly.com.br/tarefa/46169125
  6. https://brainly.com.br/tarefa/52558140
  7. https://brainly.com.br/tarefa/51514978
  8. https://brainly.com.br/tarefa/29006550
  9. https://brainly.com.br/tarefa/3974773
  10. https://brainly.com.br/tarefa/3974773
  11. https://brainly.com.br/tarefa/52675454

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe  \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares