• Matéria: Matemática
  • Autor: karynbarbosa
  • Perguntado 3 anos atrás

se x*y = 40 e x/y = 2.4 qual o valor de x e y?

Respostas

respondido por: ravenxninja
0

Resposta:

Encontrando y:

\left \{ {{x\times y =40}\atop {\frac{x}{y}=2,4}} \right.\\\\\frac{x}{y}=2,4\\\\x=2,4y\\\\x\times y=40\\2,4y\times y=40\\2,4y^2=40\\\\y^2=\frac{40}{2,4}\\\\y^2=\frac{50}{3}\\\\y=\sqrt{\frac{50}{3} }

Calculando x:

x\times y=40\\x\times \sqrt{\frac{50}{3}}=40\\x=\frac{40}{\sqrt{\frac{50}{3} } } \\\\x=\frac{40}{\sqrt{\frac{50}{3}}}\times\frac{\sqrt{\frac{50}{3} } }{\sqrt{\frac{50}{3} } }  \\\\x=\frac{40\sqrt{\frac{50}{3} } }{\frac{50}{3} } \\\\x=\frac{120\sqrt{\frac{50}{3} } }{50}\\\\x=\frac{12\sqrt{\frac{50}{3} } }{5}

respondido por: auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\begin{cases}\sf{x\:.\:y = 40}\\\sf{\dfrac{x}{y} = 2,4}\end{cases}

\sf{\dfrac{24}{10}\:.\:y\:.\:y = 40}

\sf{24y^2 = 400}

\sf{y = \dfrac{20}{2\sqrt{6}}}

\boxed{\boxed{\sf{y  = \dfrac{5\sqrt{6}}{3}}}}

\mathsf{x\:.\:\dfrac{5\sqrt{6}}{3} = 40}

\mathsf{x = \dfrac{120}{5\sqrt{6}}}

\boxed{\boxed{\sf{x = 4\sqrt{6}}}}


Nitoryu: Incrível!
Perguntas similares