(vunesp) – a parábola de equação y = ax2 passa pelo vértice da parábola y = 4x – x2. Ache o valor de a:.
Respostas
respondido por:
0
O valor de a é 1. A partir das fórmulas do vértice, podemos calcular as coordenadas do vértice da parábola.
Vértice da parábola
As coordenadas do vértice de uma função quadrática podem ser determinamos pelas fórmulas:
- Abscissa do vértice: Xᵥ = -b/(2⋅a)
- Ordenada do vértice: Yᵥ = -Δ/(4⋅a) = -(b² - 4⋅a⋅c)/(4⋅a)
Assim, determinando abscissa e a ordenada do vértice da função y = -x² + 4x:
Xᵥ = -b/(2⋅a)
Xᵥ = -4/(2⋅(-1))
Xᵥ = -4/(-2)
Xᵥ = 2
Yᵥ = -(b² - 4⋅a⋅c)/(4⋅a)
Yᵥ = -(4² - 4⋅(-1)⋅0)/(4⋅(-1))
Yᵥ = -(16)/(-4)
Yᵥ = 4
Sabendo a função y = ax² também passa pelo ponto (2,4), o valor de a será:
y = ax²
4 = a ⋅ 2²
4 = 4a
a = 1
Para saber mais sobre Funções Quadráticas, acesse: brainly.com.br/tarefa/51543014
brainly.com.br/tarefa/22994893
#SPJ11
Perguntas similares
3 anos atrás
3 anos atrás
3 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás