• Matéria: Matemática
  • Autor: darkhert11
  • Perguntado 3 anos atrás

x4-12x2+32=0
preciso da conta inteira

Respostas

respondido por: Math739
6

x^4-12x^2+32=0

a=1\quad b=-12\quad c=32

  \Delta=b^2-4\cdot a\cdot c

 \Delta=(-12)^2-4\cdot 1\cdot32

 \Delta=144-128

 \Delta=16

  x=\pm\sqrt{\dfrac{-b\pm\sqrt\Delta}{2\cdot a}}

 x=\pm\sqrt{\dfrac{-(-12)\pm\sqrt{16}}{2\cdot1}}

x=\pm\sqrt{\dfrac{12\pm4}{2}}\begin{cases}x' =+\sqrt{\dfrac{12+4}{2}}=+\sqrt{8}=+2\sqrt2\\\\x''=-\sqrt{\dfrac{12+4}{2}}=-\sqrt8=-2\sqrt2\\\\x'''=+\sqrt{\dfrac{12-4}{2}}=+\sqrt4=+2\\\\x''''=-\sqrt{\dfrac{12-4}{2}}=-\sqrt4=-2\end{cases}

\red{\boldsymbol{ S=\big\{ -2\sqrt2;\;-2;\;+2;\;+2\sqrt2\big\}}}


solkarped: Excelente!!
Math739: Valeu!!
Ayumiih17: Ótima resposta amigo!
respondido por: solkarped
6

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida equação do biquadrada é:

   \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \{-2\sqrt{2},\,-2,\,2,\,2\sqrt{2}\}\:\:\:}}\end{gathered}$}

   

Seja a equação biquadrada:

       \Large\displaystyle\text{$\begin{gathered} x^{4} - 12x^{2} + 32 = 0\end{gathered}$}

Cujos coeficientes são:

               \Large\begin{cases} a = 1\\b = -12\\c = 32\end{cases}    

Resolvendo a equação biquadrada, devemos utilizar a seguinte estratégia:

    \Large\displaystyle\text{$\begin{gathered} x = \pm\sqrt{\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{-(-12) \pm\sqrt{(-12)^{2} - 4\cdot1\cdot32}}{2\cdot1}}\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{12\pm\sqrt{144 - 128}}{2}}\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{12 \pm \sqrt{16}}{2}}\end{gathered}$}

           \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{12 \pm 4}{2}}\end{gathered}$}

Desta forma, obtemos as seguintes raízes:

 \Large\begin{cases} x' = -\sqrt{\frac{12 + 4}{2}} = -\sqrt{\frac{16}{2}} = -\sqrt{8} = -2\sqrt{2}\\x'' = -\sqrt{\frac{12 - 4}{2}} = -\sqrt{\frac{8}{2}} = -\sqrt{4} = -2\\x''' = \sqrt{\frac{12 - 4}{2}} = \sqrt{\frac{8}{2}} = \sqrt{4} = 2\\x'''' = \sqrt{\frac{12 + 4}{2}} = \sqrt{\frac{16}{2}} = \sqrt{8} = 2\sqrt{2}\end{cases}

✅ Portanto, o conjunto solução da referida equação é:

           \Large\displaystyle\text{$\begin{gathered} S = \{-2\sqrt{2},\,-2, \,2,\,2\sqrt{2}\}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/7903895
  2. https://brainly.com.br/tarefa/52932916
  3. https://brainly.com.br/tarefa/32169359
  4. https://brainly.com.br/tarefa/15250238
  5. https://brainly.com.br/tarefa/32218017
  6. https://brainly.com.br/tarefa/6340792
  7. https://brainly.com.br/tarefa/6165799
  8. https://brainly.com.br/tarefa/28281339
  9. https://brainly.com.br/tarefa/53398036

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:

Math739: Excelente!
solkarped: Obrigado!!!
Perguntas similares