Uma pessoa depositou na caderneta de poupança um valor de R$ 6. 500,00. Se o rendimento médio for de 0,63% a. M. , por quantos meses ele precisará deixar aplicado o valor para acumular R$ 9. 776,85?
Respostas
Para que a pessoa tenha o rendimento desejado, o tempo de investimento deverá ser de 18 meses. Com a fórmula dos juros compostos, podemos determinar os juros gerado após o intervalo de tempo dado.
Juros Compostos
Sabendo que o regime de aplicação é composto, o valor arrecadado será dado pela fórmula:
J = M - C
Em que:
- J são os juros;
- M é o montante gerado na aplicação;
- C é o capital investido.
O montante M obtido após um investimento pode ser calculado pela fórmula:
M = C ⋅ (1 + i)ᵀ
Em que:
- C é o capital investido;
- i é a taxa de juros compostos;
- T é o tempo de investimento.
Realizando as duas fórmulas:
J + C = C ⋅ (1 + i)ᵀ
776,85 + 6.500 = 6.500 ⋅ (1 + 0,63%)ᵀ
776,85 + 6.500 = 6.500 ⋅ (1,0063)ᵀ
7.276,85 = 6.500 ⋅ (1,0063)ᵀ
(1,0063)ᵀ = 7.7276,85 / 6.500
(1,0063)ᵀ = 1,12
Aplicando log na equação:
log(1,0063)ᵀ = log(1,12)
T ⋅ log(1,0063) = log(1,12)
T = log(1,12) / log(1,0063)
T ≅ 0,049 / 0,0027
T ≅ 18 meses
O tempo de investimento deverá ser de aproximadamente 18 meses.
Para saber mais sobre Juros Compostos, acesse: brainly.com.br/tarefa/34277687
#SPJ4