• Matéria: Matemática
  • Autor: cristielelopes2
  • Perguntado 3 anos atrás

Uma amostra casual sistemática é um método de amostragem conhecido como "quase aleatório", pois, nesse método, as amostras não apresentam a mesma probabilidade de ocorrência. Nele, o rácio k é determinado pela razão entre a quantidade total da população, N, e o tamanho da amostra, n, que se deseja selecionar. Escolhido o rácio, seleciona-se, aleatoriamente, um número natural no intervalo fechado de 1 até k, que será x1, o primeiro elemento da amostra. Por fim, os outros elementos da amostra são obtidos por:

xp = x1 + k · (p – 1)

em que p é a posição do elemento na amostra e varia de 2 até n.

Uma empresa sorteará 50 brindes entre os(as) 1 000 clientes diferentes cadastrados(as) no plano de fidelidade.

A estatística dessa empresa ficou responsável por determinar quais clientes devem ser contemplados(as). Para isso, ela realizou uma amostra casual sistemática e obteve que o(a) primeiro(a) cliente contemplado(a) é o(a) que possui, no plano de fidelidade, o cadastro de número 13.

Ao determinar os(as) outros(as) contemplados(as), a estatística notou que a 27ª pessoa contemplada nessa amostra é sua melhor amiga.

Considerando-se as informações, o número de cadastro da contemplada que é a melhor amiga dessa estatística é

a) 520.
b) 533.
c) 540.
d) 552.
e) 553.


testetikteco: ja sabe a resposta?
laranvs444: nao
davifabrino48: geekie teste?

Respostas

respondido por: gabyka2015
0

Resposta:

b) 533

Explicação passo a passo:

O k é determinado pela razão entre a quantidade total da população, N, e o tamanho da amostra, n. Então k =  1000/50 = 20.

xp = x1 + k · (p – 1) = 13 + 20 ( 27 - 1 ) = 533


felipe28199: ta certo isso ai amor?
gabyka2015: Acho que sim
Perguntas similares